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PETASCALE DATA STORAGE INSTITUTE 
Grow HPC data systems from Tera to Peta & Exa scale 
3 universities, 5 US Department of Energy National Labs 
www.pdsi-scidac.org 

Challenge: Larger = more complexity, more analytics & more failures 



The PetaFLOPS era is here 
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LANL interrupt history 
•  Los Alamos root cause logs 

•  releases 23,000 events  
causing application interruption 

•  22 clusters & 5,000 nodes 
•  covers 9 years & continues 

4096 procs 
1024 nodes 128 procs 

32 nodes 

# failures normalized by # procs 
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Projections: more failures 
•  Con’t top500.org 2X annually 

•  1 PF Roadrunner in 2008 (May 26) 

•  Cycle time flat, but more of them 
•  Moore’s law: 2X cores/chip in 18 mos 

•  # sockets, 1/MTTI = failure rate up 25%-50% per year 
•  Optimistic 0.1 failures per year per socket (vs. historic 0.25) 
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Checkpointing failure tolerance in trouble 
•  Periodic (p) pause to checkpoint (t) 

•  On failure, roll back & restart 

•  Balanced systems 
•  disk speed tracks FLOPS & mem size,  

so checkpoint capture (t) is constant time 
•  1 – AppUtilization = t/p + p/(2*MTTI)  

      p2 = 2*t*MTTI 

•  but dropping MTTI  
kills app utilization! 
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Bolster HEC fault tolerance 
•  More storage bandwidth 

•  disk speed 1.2X/yr 
–  # disks +67%/y  

just for balance ! 
•  to also counter MTTI 

–  # disks +130%/yr ! 
•  poor appetite for the cost 

•  Compress checkpoints 
•  plenty of cycles available 
•  smaller fraction of memory 

each year 
–  25-50% smaller / yr 
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Different approaches 
•  Dedicated checkpoint device 

•  Stage checkpoint through fast memory 
•  Cost of dedicated memory large fraction of total 
•  Cheaper memory (flash?) now bandwidth limited 

•  Classic enterprise process pairs duplication 
•  Flat 50% efficiency cost, plus message duplication 

Compute

Cluster


Checkpoint Memory


SLOW WRITE


Disk Storage Devices


FAST WRITE
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Recap so far 
•  Failure rates proportional to number of components 

•  Specifically, growing # sockets in parallel computer 

•  If peak compute continues to outstrip Moore’s law 
•  MTTI will drop, forcing more checkpoints & restarts 

•  Hero apps, wanting all the resources, bear burden 
•  Storage won’t keep up b/c cost; dedicated device similar 
•  Squeezing checkpoint not believable; process pairs is 

•  Effective fault tolerance increasing challenge 

•  Schroeder,  B.,  G.  A.  Gibson,  “Understanding  Failures  in  Petascale 
Computers,” Journal of Physics: Conference Series 78 (2007), SciDAC 2007. 
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Storage suffers failures too 

Internet services Y 
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Annual disk replacement rate (ARR) 
•  Datasheet MTTFs are 1,000,000 to 1,500,000 hours. 
=> Expected annual replacement rate (ARR): 0.58 - 0.88 %. 

ARR = 0.58% 

ARR = 0.88% 

Data avrg = 3% 
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Projection of concurrent reconstructions 
•  Model numbers of disks needed to support Petascale 

fault tolerance, apply failure rates & disk size trends 
•  Slower than Moore’s law because of move to 2.5” disks 
•  Traditional RAID controller reconstruction modeled 

•  Today reconstructing disks up to 10-20% of time 
•  Could be soon 100s of concurrent reconstructions! 
•  Storage does not have 

checkpoint/restart model 
•  Can’t forget last hour  

of data writes and restart 

•  Design normal case 
for many failures always   
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And yet disk reliability has improved 

•  RAID 5 protection sufficient when MTBF was 100,000 hours 
•  Today’s disks are 10 times more reliable per mfr specs 

RAID reliability should be 100X greater  

Failures  
per 
Duty Cycle 2007: MTBF of  

1.2 Million Hours 

1995 2005 2000 2010 

1996: MTBF of  
100 Thousand Hours 
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But size of disk reconstruction grows faster 

•  Disks construction is 250 times more work, taking much more time 
•  Media errors proportional to reading, so longer reconstructions fail more 

More Media = Longer, Riskier Reconstruction 

1995 2005 2000 2010 

Error Rate Constant at 
1 in 1014 bits read 

2GB  
disk drives 

500GB  
disk drives 
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Need reconstruction in parallel  
•  Scaling disk failure repair:  

should speed up with size 
•  Traditional RAID recovery  

speed constant with scale 
– Not massively parallel 

•  Instead, decluster RAID sets 
•  RAID work striped widely 

–  All arms & managers  
used in recovery 

•  More storage = faster repair 
•  Plus, shorter degraded periods 

•  Storage fault tolerance needs even more attention 

RAID controller 
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And point solutions for narrow problems 
•  Study media errors 
•  Devise per disk correcting 

codes to scale with disk size 
•  Improves on internal ECC 

capabilities (limited by 
economics 

•  Independent of traditional 
cross disk parity schemes 

•  Avoids using double failed 
disk codes until double 
failures are the problem 

Example:  
Panasas 
Vertical  
Parity 

Garth Gibson, 6/10/2008
16 www.pdsi-scidac.org 



And it ain’t all huge data files 
•  Study data distributions – millions of files – 20-80% tiny 

•  Still majority of space in relatively few huge files (like checkpoints) 

•  Lots more metadata to manage 

Garth Gibson, 6/10/2008
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Closing 
•  Future parallel computing increasingly suffers failures 
•  Field data needs to be collected and shared 

•  cfdr.usenix.org, pdsi-scidac.org: please contribute! 

•  Traditional fault tolerance needs to be revisited 
•  Checkpointing needs new paradigms 

•  Systems need to be designed to operate in repair 
•  Reconstruction must be parallel, faster in larger systems 
•  Specific failures should be addressed with specific solutions 

•  Brent Welch, Garth Gibson, et. al., “Scalable Performance of the 
Panasas Parallel File System,” USENIX Conference on File and 
Storage Technology (FAST), Feb. 2008. 
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Data intensive computing has many forms 
NIST translate 100 articles 

–  Arabic-English competition 

2005 outcome: Google wins! 
Qualitatively better on 1st entry 
Not most sophisticated approach  

Brute force statistics 

But more data & compute !! 
200M words from UN translations 
1 trillion words of English grammar 
1000 processor cluster 

Science of all types going to scale 
Can’t do the best science without it 
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