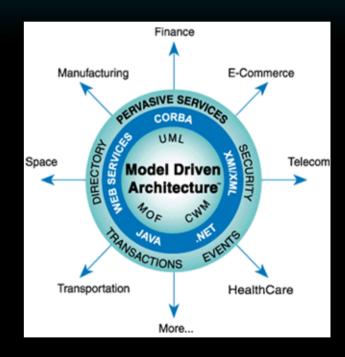
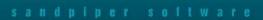


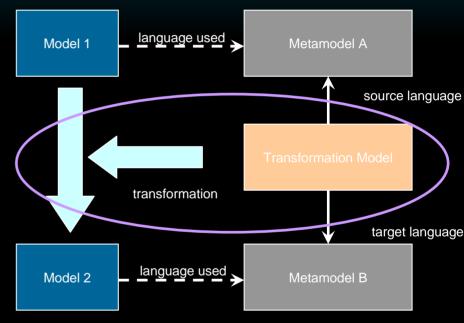

## The Model-Driven Semantic Web Emerging Technologies & Implementation Strategies


Elisa Kendall Sandpiper Software

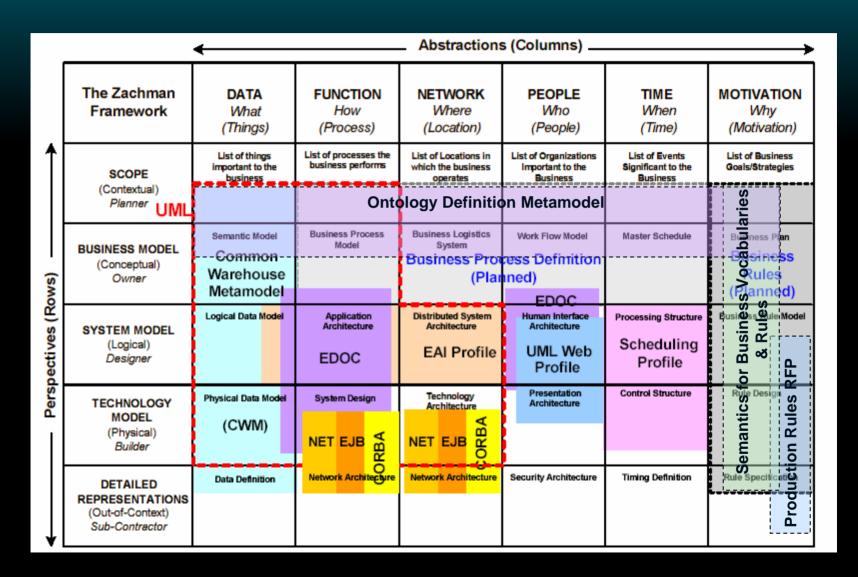

August 16, 2005



### Model Driven Architecture® (MDA®)


- ∞ Insulates business applications from technology evolution, for
  - Increased portability and platform independence
  - Cross-platform interoperability
  - Domain-relevant specificity
- - The Unified Modeling Language (UML®)
  - The Meta-Object Facility (MOF™)
  - The Common Warehouse Metamodel (CWM™)
- MOF defines the metadata architecture for MDA
  - Database schema, UML and ER models, business and manufacturing process models, business rules, API definitions, configuration and deployment descriptors, etc.
  - Supports automation of physical management and integration of enterprise metadata
  - MOF models of metadata are called metamodels






## MOF-Based Metadata Management

- MOF tools use metamodels to generate code that manages metadata, as XML documents, CORBA objects, Java objects
- - Read and manipulate
  - Serialize/transform
  - Abstract the details based on access patterns
- - XML Metadata Interchange (XMI®)
  - CORBA Metadata Interface (CMI)
  - Java Metadata Interface (JMI)
- Metamodels are defined for
  - Relational and hierarchical database modeling
  - Online analytical processing (OLAP)
  - Business process definition, business rules specification
  - XML, UML, and CORBA IDL



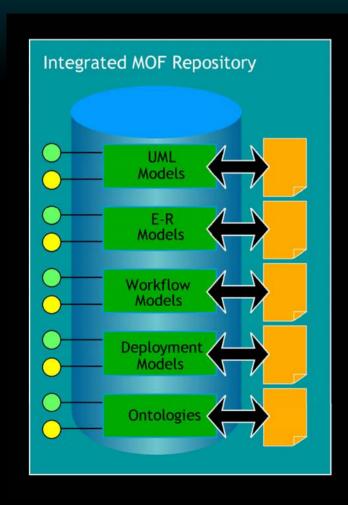
#### **OMG Standards & Zachman Framework**

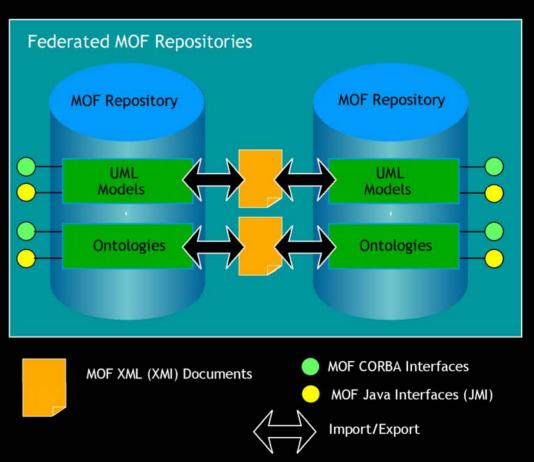




### MDA from the KR Perspective

- ∞ Ell solutions rely on strict adherence to agreements based on common information models that take weeks or months to build
- Modifications to the interchange agreements are costly and time consuming
- ∑ Today, the analysis and reasoning required to align multiple parties' information models has to be done by people
- Machines display only syntactic information models and informal text describing the semantics of the models
- Without formal semantics, machines cannot aid the alignment process
- MOF® and MDA® provide the basis for automating the syntactic transformations





## MOF and KR Together

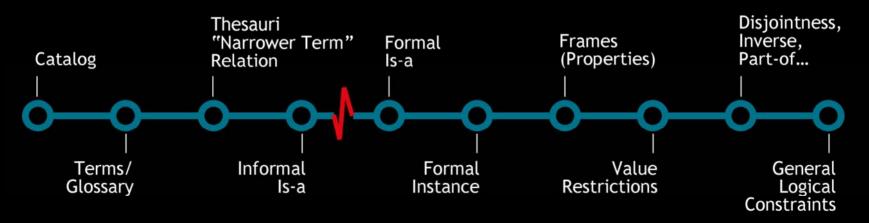
- MOF technology streamlines the mechanics of managing models as XML documents, Java objects, CORBA objects
- - Supports semantic alignment among differing vocabularies and nomenclatures
  - Enables consistency checking and model validation, business rule analysis
  - Allows us to ask questions over multiple resources that we could not answer previously
  - Enables policy-driven applications to leverage existing knowledge and policies to solve business problems
    - Detect inconsistent financial transactions
    - Support business policy enforcement
    - Facilitate next generation network management and security applications while integrating with existing RDBMS and OLAP data stores
- MOF provides no help with reasoning
- ∞ Complementary technologies despite some overlap



## Metadata Management Scenarios







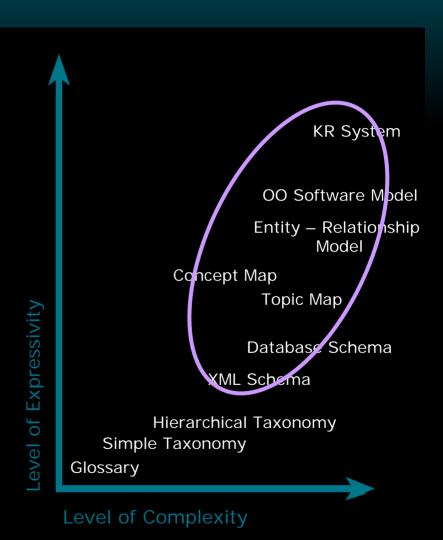

#### Level Setting

#### An ontology specifies a rich description of the

- ∞ Terminology, concepts, nomenclature
- ∞ Properties explicitly defining concepts
- ∞ Relations among concepts (hierarchical and lattice)
- ∞ Rules distinguishing concepts, refining definitions and relations (constraints, restrictions, regular expressions)

relevant to a particular domain or area of interest.



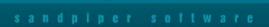

\*Based On Aaai '99 Ontologies Panel - Mcguinness, Welty, Ushold, Gruninger, Lehmann



## Classifying Ontologies

Classification techniques are as diverse as conceptual models; and generally include understanding

- Methodology
- ∞ Level of Expressivity
- Reliability / Level of Authoritativeness
- ∞ Relevance
- ∞ Amount of Automation





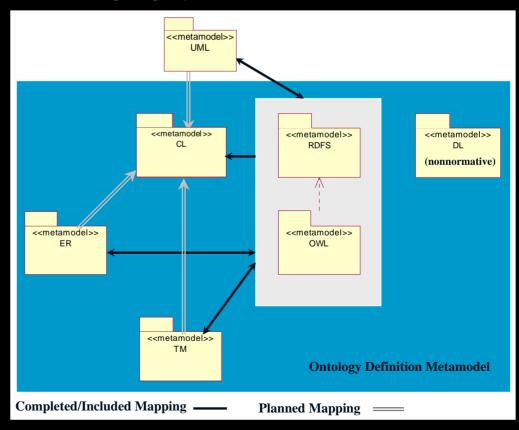

#### **Model Dynamics**

Model centric perspectives characterize the ontologies themselves and are concerned with their structure, formalism and dynamics.

| Perspective                   | One Extreme                                                            | Other Extreme                                                              |
|-------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Level of<br>Authoritativeness | Least authoritative, broader shallowly defined ontologies              | Most authoritative, narrower, more deeply defined ontologies               |
| Source of<br>Structure        | Passive (Transcendent) -<br>Structure originates outside<br>the system | Active (Immanent) - Structure emerges from data or behavior                |
| Degree of<br>Formality        | Informal or primarily taxonomic                                        | Formal, having rigorously defined types, relations, and theories or axioms |
| Model Dynamics                | Read-only, ontologies are static                                       | Volatile, ontologies are fluid and changing                                |
| Instance Dynamics             | Read-only, resource instances are static                               | Volatile, resource instances change continuously                           |

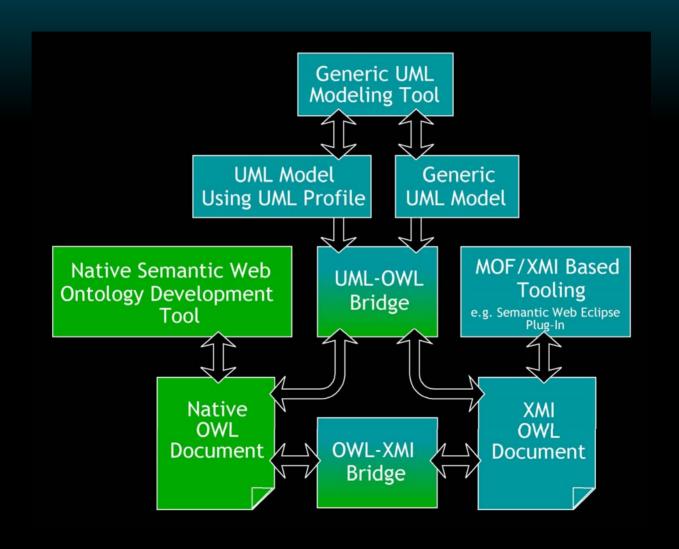


### **Application Characteristics**


Application centric perspectives are concerned with how applications use and manipulate ontologies.

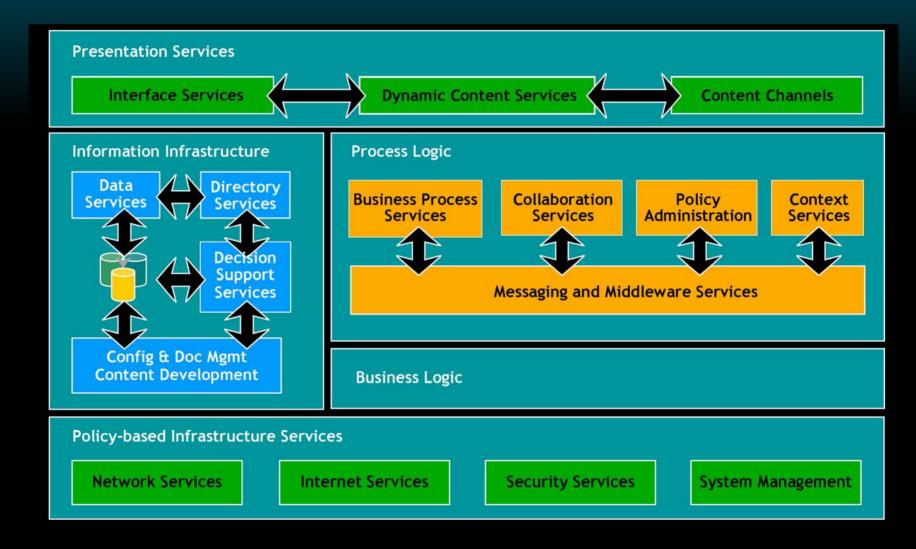
| Perspective                        | One Extreme                                       | Other Extreme                              |
|------------------------------------|---------------------------------------------------|--------------------------------------------|
| Control/Degree<br>of Manageability | Externally focused, public (little or no control) | Internally focused, private (full control) |
| Application<br>Changeability       | Static (with periodic updates)                    | Dynamic                                    |
| Coupling                           | Loosely-coupled                                   | Tightly-coupled                            |
| Integration Focus                  | Information integration                           | Application integration                    |
| Lifecycle Usage                    | Design Time                                       | Run Time                                   |




#### Towards a Model Driven Semantic Web - ODM

- ∞ Mappings (MOF QVT Relations Language planned)
- ∞ UML2 Profiles
  - RDFS & OWL
  - TM
- - XMI
  - Java APIs
  - Proof-of-concepts
- ∞ Conformance
  - RDFS & OWL
  - All else optional





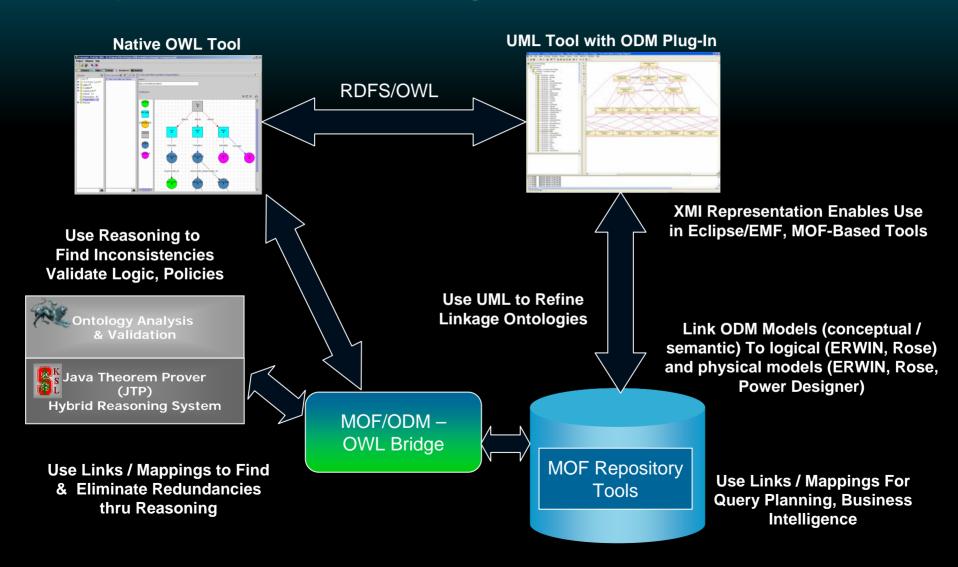

## Bridging KR and MDA





## **Technology Architecture**






#### **ODM Status**

- ∞ Several revision cycles on the specification to date
- ∞ Platform Independent Metamodels (PIMs) include
  - Resource Description Framework and Web Ontology Language (covers abstract syntax, common concrete syntactic elements from both)
  - Common Logic (CL), based on draft ISO CD 24707
  - Topic Maps (TM), based on draft ISO 13250-2 specification
  - ER based on de facto industry standards
  - DL Core high-level, relatively unconstrained Description Logics based metamodel (non-normative, informational)
- ∞ Revised submission (next iteration) will be posted 8/22 to the OMG web site
- ∞ Presentation on 8/22 revision planned for OMG Atlanta meeting (September 12-16)
- ∞ Plans for recommendation / vote for adoption December meeting



## Implementation Strategies





### **Business Integration**

- OMG RFP forthcoming for extensions to ODM to support Semantic Web Services, EXPRESS, eventually SWRL (when a rule language is selected/formalized)
- ∑ Business Semantics for Business Rules joint revised submission, called "Semantics for Business Vocabularies & Rules (SBVR)" is logically grounded in Common Logic / ODM CL Metamodel
- ∞ Potential mapping to forthcoming Production Rule specification
- ∑
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
   □
- ∞ Strategy:
  - Link business process models through MOF environment
  - Generate OWL for the linkage
  - Use linkage as basis for mediating business process semantics



# A Framework for Next Generation Interoperability

- MOF's model management facilities and KR capabilities for machine interpretable semantics and reasoning are separate, complementary concerns
- The ability of reasoners to find discrepancies in invariant rules, preconditions, and post conditions, can add scalability to MDA's use of Design-by-Contract (DBC)
- □ UML profiles can serve as graphical notations for Semantic Web languages, dramatically increasing ease of use
- ∞ The combination of MDA and SW technologies promises to
  - Address the missing link in business process automation
  - Enable true information interoperability and continuity
  - Support next generation policy-based applications development



#### The Model-Driven Semantic Web

- ∞ Leveraging existing assets breaks that bottleneck
- ∞ Correlation through reasoning provides the utility
  - Multi-dimensional, cross organizational tailored semantic views
  - "Virtual" repository approach enables elimination of redundancy
  - Reasoning supports quality initiatives through inconsistency discovery, model and content validation
- MDA and MOF coupled with Semantic Web technologies are the key