Metamodels and Mappings Ending the Interoperability War

Andreas Tolk, Ph.D.

Virginia Modeling Analysis and Simulation Center Old Dominion University

What is this all about?

- Status quo
 - Everybody is modular, composable, interoperable
 - Everything is based on standards
- But
 - Standardized solutions differ between the communities (M&S and C4I)
 - Standardized solutions differ within the communities (HLA and DIS, RTI 1.3 NG and RTI 1516)

How to insure mapping between standard solutions to avoid dead ends in IT solutions?

Presentation Outline

- Some Legacy Concepts
 - ISO/OSI Model for Network Standards
 - Service Oriented Architectures, Computer Grids, and Enterprise Architectures
- Some related Military Frameworks and Standards
 - DoD Architecture Framework (DoDAF)
 - Command and Control Information Exchange Data Model (C2IEDM)
 - Global Information Grid (GIG)
- Metamodels and Mappings

Some Legacy Concepts

The "Perfect Example:" ISO/OSI Network Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

- Layers of Network Operating Systems
 - Clearly defined functions
 - Clearly defined interfaces
 - Not a Solution, but a Structure for a Solution
- Some Rules of ISO/OSI Framework
 - How network devices contact each other
 - How does the device to transport data and where
 - How to arrange and connect physical devices
 - How to maintain consistent rate of data flow
 - How electronic data is presented on the network media

ISO/OSI

Internet Protocol Suite

MS Windows NT

Application
Presentation
Session
Transport
Network
Data Link
Physical

NFS				
XDR	SNMP	FTP	Telnet	SMTP
RPC				
TCP				
IP				
LAN Drivers				
Media Access Control				
Physical				

Redirectors		Server		
TDI				
TCP/IP	NWLink	NBT	DLC	
NDIS 4.0				
		DIS network ace card drivers		
Physical				

ISO/OSI

Netware

Apple

Application
Presentation
Session
Transport
Network
Data Link
Physical

Netware core protocol			
Named pipes	NetBIOS		
SPX			
IPX			
LAN drivers			
ODI	NDIS		
Physical			

Apple Share				
Apple Talk Filing Prot. (AFP)				
ASP	ADSP	ZIP		PAP
ATP	NBP	AEP		RTMP
Datagram Delivery Prot. (DDP)				
LAN drivers				
LocalTalk Toke		nTalk EtherTal		therTalk
Physical				

Why is this the Perfect Model?

- ISO/OSI model ensures that manufacturers build equipment that intercommunicates and interoperates
 - Transparent model of functionality and interfaces
 - Creating a "virtually homogeneous" network implemented by heterogeneous devices
 - Mapping of alternative solutions supported

The ISO/OSI model presents the heterogeneous and multi-standard environment as one network to the user!

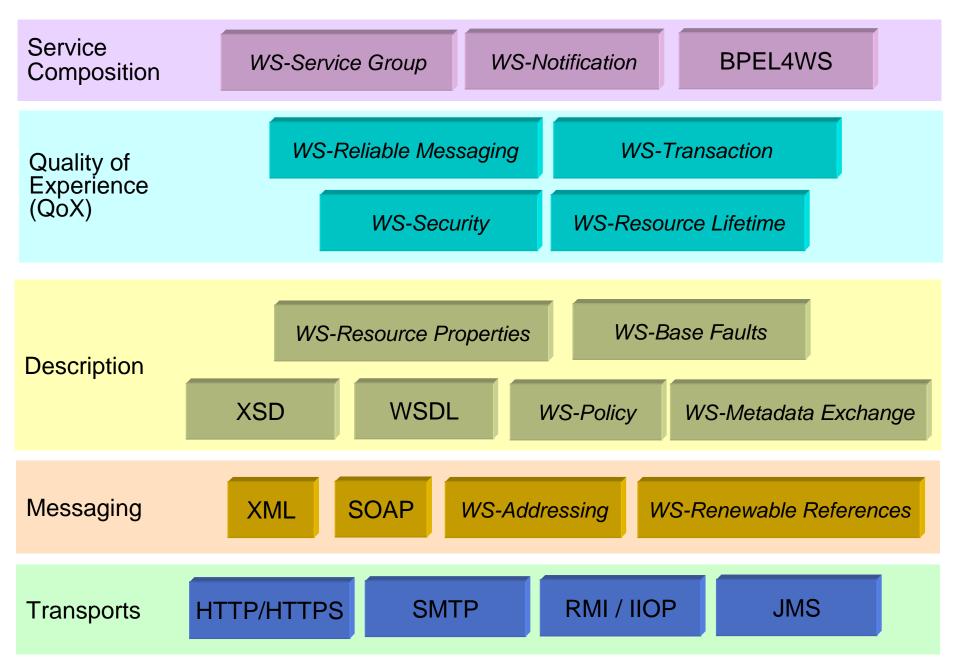
How can we apply this to M&S needs?

Computer Grids

- As the heterogeneity of networks is captured by the ISO/OSI layers, computer grids must be managed as well
- Grid Objectives
 - Distributed computing environments operating as a uniform service
 - Research management and security independent from individual technology choices
 - Virtualization of distributed computing and data resources

Creating a Single System Image granting Users and Applications seamless Access to available IT Capabilities

Service Oriented Architecture


- Objective
 - Composable Services delivering the functionality for the user based on his current needs
- Definition of Services
 - Well defined software component
 - Implementation
 - Operational functionality
 - Self descriptive
 - Service is independent
 - Doesn't depend on the status or context of the caller

The Challenge: Composable Services

- What is needed
 - Migration of Solutions into Services (Reuse)
 - Composition of Services
 - Orchestration of Services
- Current technological solution
 - Web Services / Grid Services
 - XML, SOAP, WSDL, UDDI

Is this sufficient for the Grid? Is this sufficient for M&S and C4I?

© 2004 Dr. Daniel Sabbah, Vice President of Strategy & Technology, IBM Software Group, Globus World 2004

Enterprise Architecture

- Strategic Capabilities Architecture
 - Strategic vision
- Business Architecture
 - Core competencies and IT support
- Information Architecture
 - Information/Information exchange requirement
- Data Architecture
 - Data management
- System/Computer Architecture
 - Implementation (SOA is one option)

There is not one generally supported and accepted standard!

There will always be proprietary and highly adapted system solutions!

Standards will continue to evolve!

Migration and Mapping Management is needed!

© 2004 VMASC 04F-SIW-105

Level 5 Conceptual Interoperability

Level 4 **Dynamic/Pragmatic Interoperability**

Level 3
Semantic Interoperability

Level 2
Syntactic Interoperability

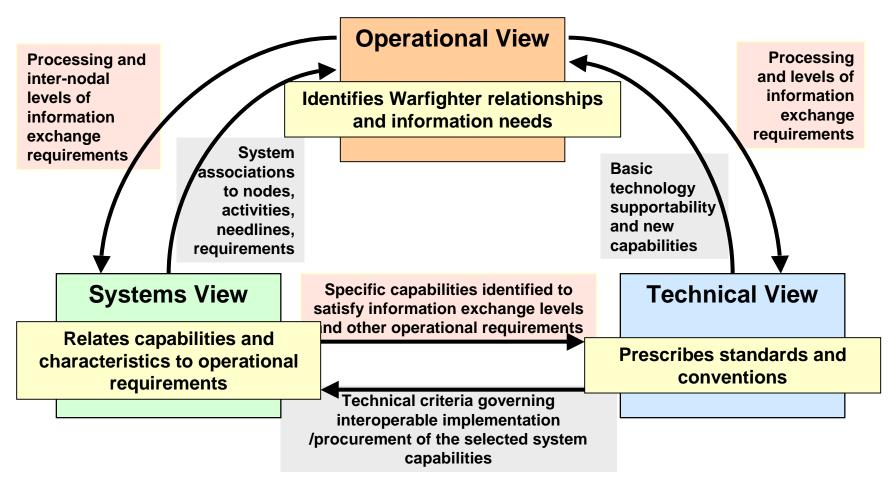
Level 1
Technical Interoperability

Level 0
No Interoperability

Some related Military Frameworks and Standards

Military IT is facing the same Challenges

- Generally, military IT is moving towards Enterprise Solutions based on Service Oriented Architectures
 - DoD Architecture Framework
 - Global Information Grid
 - Information Exchange Standards
 - **–** ...
- Specifically for M&S, a model is a Meaningful Abstraction of Reality, so we have to cope with the assumption and constraints in a consistent way
 - Conceptual Modeling
 - Engineering Standards
 - ...

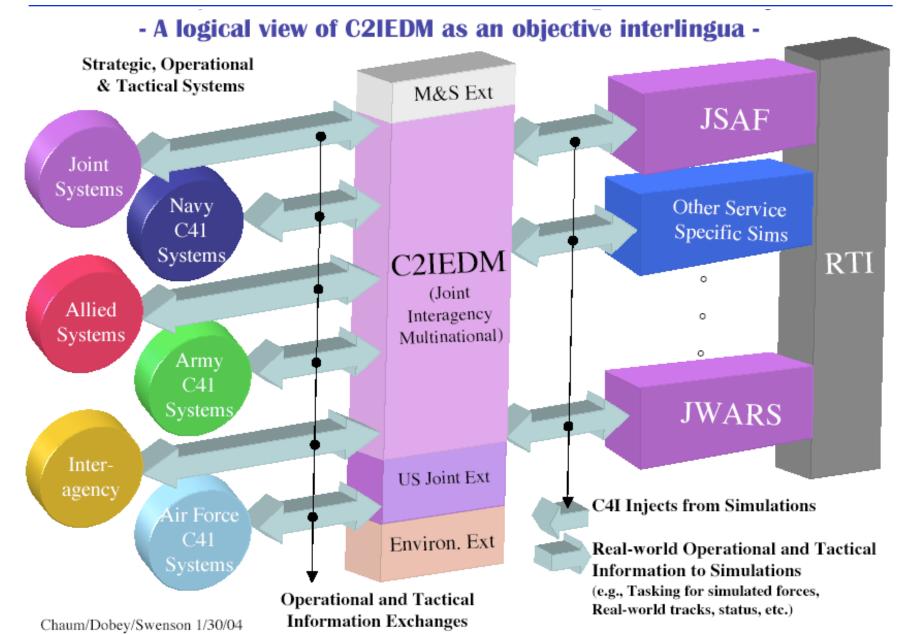


DoD Architecture Framework (DoDAF)

- DoDAF is a tool to structure the Enterprise Architecture in the military domain
 - Business model in operation views
 - Implementation in system views
 - Standards applied in technical views
- DoDAF is using increasingly UML and SysML artifacts
 - Better communications between users, developers, and supporters
- Core Architecture Data Model (CADM) represents DoDAF artifacts in an exchangeable data format
 - Data model for architectures
 - Describes information exchange requirements, not information exchange format

DoDAF Fundamental Linkages

Command & Control Information Exchange Data Model (C2IEDM)


- Automated C2 Interface Exchange Mechanism To Support Liaison and Automation
 - Exchange Of Orders/Graphics
 - Holdings/Status Information
- Operational exchange standards use a common vocabulary consisting of 176 information categories that include over 1500 content elements.

Fire Support:	4	IEW:	16
ADA:	12	CSS:	37
Maneuver:	6	A2C2:	11
NBC:	19	MP:	9
Engineer/Terrain:	15	CMO:	21
Weather:	9	Signal:	9
		Enemy:	8

Total:

176

More information on the C2IEDM

- Multilateral Interoperability Programme website
 - http://www.mip-site.org
- SISO Proceedings
 - 99F-SIW-008: Using ATCCIS as an Information Layer to couple CGF Federates and Closed Combat Simulations
 - O4E-SIW-016: Moving towards a Lingua Franca for M&S and C3I – Developments concerning the C2IEDM
- C2IEDM Workshop March 2004
 - http://www.vmasc.odu.edu/c2iedm/ws2004.html

Distributed Simulation

- If Simulation wants to reach to warfighter using his operational systems, the constraints must be met (running in the GIG/COE, DoDAF)
- DoDAF descriptions are a bridge between simulation and user (requirement driven)

```
    Capability based procurement (04S-SIW-108)
```

 $- VV&A \qquad (03S-SIW-029)$

- FEDEP (04F-SIW-015)

Operational Requirements (01F-SIW-112)

Connection for the Military EA already there!

Live Cycle and Distributed Simulation

- User Requirements lead to DoDAF
- DoDAF as an "Executable Architecture" can lead to a first strawman solution
- DoDAF can be used to define constraints for solutions based on operational systems (including M&S)
- Platform Independent Models (metamodel) maps to system specific solutions / Reverse Engineering makes functionality visible for management

Migration and Mapping support whole Life Cycle

Services in the Future IT Backbone

- Global Information Grid (GIG)
 - DoD Directive 8100.1.
 Global Information Grid (GIG) Overarching Policy.
 The Pentagon, Washington, D.C., September 2002
- Net Centric Data Strategy
 - DoD, Chief of Information Operations (CIO).
 Department of Defense Net-Centric Data Strategy.
 The Pentagon, Washington, D.C., May 9, 2003
- DoD Metadata
 - DoD, Deputy Assistant Secretary of Defense
 Department of Defense Discovery Metadata Specification
 (DDMS) Version 1.0.
 The Pentagon, Washington, D.C.

GIG Governance Business Warfighter **National Intelligence Mission Area Mission Area Mission Area** Governance Governance Governance **Communications Systems Battlespace Awareness** Management Domain Focused Logistics **Human Resources** Force Application Strategic Planning & Environment & Budgeting Battlespace Installations Acquisition Protection Accounting Logistics Domain Domain Domain Finance Domain Domain In work **Information Assurance Domain** In work **Core Enterprise** Computing **Services** Communications Infrastructure **Domain Domain Domain** Governance **National Intelligence Enterprise Information**

Environment Mission Area

Enterprise Information Environment

Governance

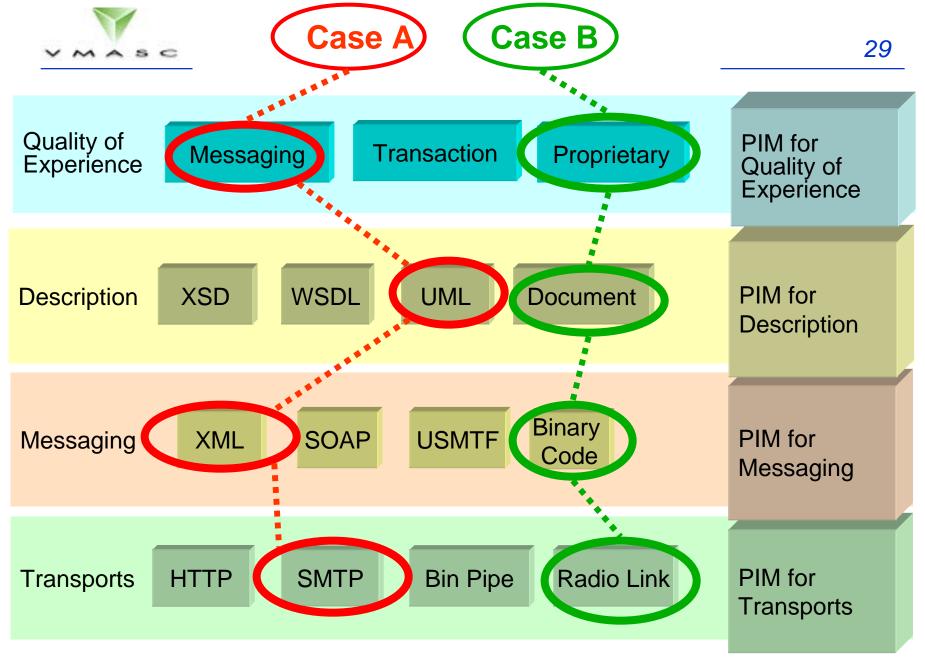
Mission Area

Metamodels and Mappings

Lessons learned so far

- There will be no Enterprise wide Data Model
 - Metadata
 - Data Mediation Services
- Multiple conceptual views are possible and needed
 - Assumptions and constraints
 - Heterogeneous solutions (divide and conquer)
- Diversity is good
 - Multiple views are needed to cope with the complete problem

Migration and Mapping Management to bring Everything back together!



Metamodels and Mapping

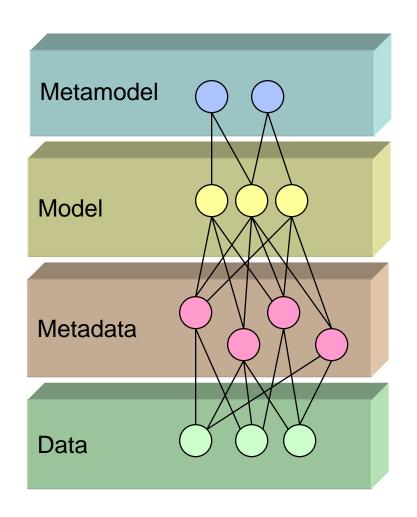
Metamodels

- Precise definition of constructs and rules needed for semantic models
- Implementation specific independent descriptions of the underlying algorithmic ideas
- Abstraction and generalization
- Avoid double work and enable reuse

What Metadata is for Data (Mediation, Unambiguity) Will Metamodels be for Models

Summary and Recommendations

Recommendations


- We need to shift from standards to
 - Metamodels and Mapping Frameworks supporting Family of Standards
- Evaluation of proposed solution for M&S
 - Model Driven Architecture (OMG)
 - Global Information Grid (COI M&S)
 - Semantic Web, Ontologies
 - Next Generation Web Services and Grid Services

Active Participation of the M&S Community is needed

Metamodels and Mapping - Bridging the Gap

- Framework is needed for Metamodels and Mappings
 - Identify and manage
 - Alternative solutions
 - Complementary solutions
 - Show
 - Common ground
 - Contradictions (assumptions, constraints)
- Applicable to Forward- and Reverse-Engineering

Questions

http://www.vmasc.odu.edu