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Executive Summary 
 
A multi-stage roadmap is presented by which to incrementally transform today's 
static, rigid Enterprise Architecture into a dynamically fluid and fully netcentric 
architecture that enables automated interoperability without requiring uniformity. 
A concrete worked example demonstrates the recommendations of the first 
stage.
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Introduction 

Our Approach 

What the Roadmap is 
The roadmap lays out the incremental development and evolution of a 
framework for supporting language and knowledge evolution and interoperability. 
It is the development of this framework for which the roadmap provides 
prescriptions, proscriptions, advisories and cautions. 

What the Roadmap is not 
The roadmap is not a rigid prescription - as we drive we may change direction 
and replan the course ahead.  

Motivation - Living, Liaising Languages 
Information technology is currently in the midst of a transformation. In 1998 the 
architects of this roadmap went public with a model of where they saw the 
industry heading, based on their research and long-time experience in the 
industry. The model identified a new transformation that was at the time just 
beginning – the third wave – a transformation into an era we call Computing 
Fabrics [Von Schweber 1998c]. Whereas the industry began with uniprocessing 
(the first wave) in the 1940's, and began a transformation into parallel and 
distributed processing in the late 1970's and early 1980's (the second wave), the 
third wave, Computing Fabrics, would transform rigid and static distribution of 
functionality into a fluid, dynamic fabric that blurred the very distinction between 
system and network, where system boundaries exhibit plasticity. 
 
Nine years later evidence of the third wave surrounds us, in blade servers, 
wireless mesh networks, Web 2.0, P2P, grid computing, social networks, service 
oriented architecture (SOA), systems of systems, …, the list goes on and on.  
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What is not commonly recognized is that this wave is a transformation of 
clockwork mechanism into living technology. Consider netcentricity; this is not 
merely the notion of employing multiple services and systems on and across the 
network. Rather, systems and services will come and go, entering and departing 
the network, even changing out from under it. Yet the systems of systems 
comprised of such network resident services must remain functional, continuing 
to meet their quality of service contracts in terms of capacity and capability. 
While achieving this is just the beginning it already catapults us into the realm of 
biological behavior, including metabolism, locomotion and reproduction. 
 
Beyond this, the overwhelming value of netcentricity, collaboration, systems of 
systems, semantic interoperability and service oriented architectures will only be 
realized when we acknowledge that systems, to collaborate, must possess 
plasticity of form and function – they must have the capacity to change, adapt, 
learn. To get serious value from netcentrism requires more than a mapping of 
one rigid system to another; it requires self-transformation whereby each 
constituent may grow in a manner that they may comprehend the other. Each 
entity achieves this by taking on, as its own, aspects of the other, aligning and 
merging these new aspects into its being. Each participant must change, learn 
and evolve. 
 
For me to benefit from your knowledge I must learn, which inextricably changes 
me, the learner, as to learn is to change and grow. One who is rigid cannot learn 
and therefore cannot benefit from the knowledge and skills of others. As it is 
with such social networks so it is with netcentric technologies. 
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Advanced interoperability requires reciprocal learning whereby each participant 
becomes more than they were before interoperating; interoperability demands of 
its participants that they exhibit plasticity, capable of change at an arbitrarily 
deep level. This is deeply biological. When an ecosystem is extended through 
introduction of a foreign species new and existing species alike may co-evolve to 
exploit the fitness landscape of the newly extended ecosystem. Co-evolution is a 
process of reciprocal evolutionary adaptation through self modification. 
 
Such co-evolutionary symbiosis separates ecosystem from mere system; 
ecosystem constituents must be able to change, adapt, learn. A system becomes 
an ecosystem only when its constituents acquire this ability to symbiotically co-
evolve. Living, liaising languages are a means to bring this cultural co-evolution 
and symbiosis to our netcentric technology, including SOAs, systems-of-systems, 
semantic interoperability, collaboration, etc. 
 
The state of the art in ontologies and ontology languages today are a far cry 
from living languages. Consider a conversation between two software agents, 
one based on a reasoning engine using modal logic (Modal agent) and another 
agent using OWL-DL.  
 
Modal agent: There MayExist x such that [(in(x,y) AND heaven(y)) OR (in(x,z) 
AND Earth(z))] AND [NOT(in(x,r) AND philosophy(r,OWL)] 
 
OWL agent: (silence) 
 

(apologies to Shakespeare)  
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While this fictional exchange was meant to be tongue-in-cheek it is indicative of 
the kind of netcentric communications we can expect given the best of ontology 
mediated communication. This is the antithesis of human communication, where 
the parties will learn and adapt in order to establish a meaningful exchange. 

To get the kind of netcentricity worth wanting we must move beyond the 
clockwork mechanism.  

Enterprise Architecture in a netcentric world must acknowledge the era it is in 
and address the shortcomings and limitations of previous eras' technologies. 
That means transforming static and rigid languages, ontologies, models, 
schemas and mappings into their fluid, dynamic, living descendants. We refer to 
this new breed as Living Liaising Languages. 
 

 

The question becomes: how are programs, such as GSA's OsEra (Open Source 
Egov Reference Architecture) to transform themselves incrementally from where 
they are today to where they need to go? 

The roadmap you are reading is a considered answer to that question.  

Just the first stage of the roadmap enables automating the mapping of semantics 
from one community, expressed in their language, to a distinct semantics of 
another community, expressed in a distinct language. Furthermore, such 
mappings and transformations may be managed and executed in the mainstream 
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technology of the p resent, a relational database management system; no 
expensive, novel infrastructure required. 
 
Those wishing to bypass the theory and planning and just get a look at a 
concrete example may wish to jump ahead in this document to the worked 
example. There we: 

• Transform UML class models into OWL-DL ontologies for management 
in a semantic web repository, to post on the web, visualize with an 
ontology editing tool (e.g., Protégé), as content for a web page, 
semantic markup of a web service, or for input to a reasoning engine. 

• Transform OWL-DL ontologies into UML class models for management 
in a MOF repository, visualization and editing in a UML tool, or to apply 
within a model driven architecture effort. 
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Prerequisites - what you should know to read this 
While this roadmap introduces several advanced mathematical tools, prior 
knowledge of these, or discrete mathematics in general, is not required. A 
worked example conveys the power of the tools in the domain of interoperability 
and Enterprise Architecture. Descriptions of each stage of the roadmap include a 
summary table requiring absolutely no mathematical skill to understand and 
appreciate. Each summary table describes the what, why and expected results of 
each stage, and it does this for three key topics (see below). However, those 
with a background in computer science or mathematics will be able to get more 
out of the detail sections of roadmap stages. 

How to read and use the roadmap 
Think of a road. First you notice that it has multiple lanes, some for faster traffic, 
some for slower, and one for entering and exiting. Then as you drive the road 
you notice its on-ramps, which bring new traffic onto the road, and off-ramps, 
which provide a choice of destinations and an opportunity to rest and refuel. 
Much later you see new road being built and learn that a road has many layers, 
where lower layers provide a stable foundation for higher layers and the road 
surface. 
 
Importantly, as you move ahead on the roadmap, from early to later stages, the 
character of the recommendations changes. In Stage 1 the roadmap makes 
certain prescriptions, i.e., "Do this!". But later stages of the roadmap should be 
taken as suggestions or explorations, not hard and fast prescriptions. The aim of 
course is to research, verify and flesh-out subsequent stages of the roadmap as 
we move ahead; we're building the road as we go but we're planning and 
staging our road crews well in advance of driving. 

Structure of the Roadmap 
Each stage of the roadmap is accompanied by a summary table. The three 
columns – Definition, Derivation and Execution – present the key aspects of the 
framework at that stage. 

• Definition – Means by which the framework supports defining, revising 
and extending language systems, including things like the language 
syntax and semantics, idioms, ontologies, models and schemas. 

• Derivation – Means by which the framework supports deriving mappings 
and transformations between language systems (think translation). 

• Execution – Means by which definitions and derivations may be 
implemented, managed and executed. 
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This is what each summary table looks like (sans the actual content). 
 
 Definition Derivation Execution 

What: 
Prescriptions 

& Proscriptions; 
Advisories 

& Cautions 

   

Why: 
Motivation 

& objectives 

   

Key tasks    
Expected 
Results: 

Improvement 
above and beyond 
the previous stage 
(e.g., comparative 

advantages) 
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The Roadmap at a Glance 
 

 
 

Trends over the course of the roadmap 
• Evolution of community models from totalitarian dictatorship (one dictated 

world view at point of departure) through hub and spoke to egalitarian 
society (each to their own); from homogeneity to heterogeneity; from 
maximal required commonality to minimal required commonality 

• From non-collaborative to collaborative 
• From static and rigid to living and evolutionary 
• Evolution of meta language from RDF to OWL-DL to OWL-RA to single-

math Institution to poly-math Institution to poly-math Parchments 
• Evolution of separation of concerns, from syntax to multiple dimensions 
• Evolution of infrastructure focus from classifications to theory 

compositions 

Assumptions and preferences 
• Exploit available tooling and standards where prudent 
• Exploit mindshare 
• Build on success 
• Evolve incrementally and improve continuously 
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The Roadmap in Detail 

Point of Departure 
• Semantic Core [Casanave 2006], i.e., non-composable language, the 

result of manual analysis and composition, serving as a hub  

First Stage – Automated Interoperation Of Heterogeneous 
Languages And Ontologies 
 

First Stage 
 Definition Derivation Execution 

W
h

at
 

Employ an ontology 
language to 
capture definitions 
of community 
languages as 
ontologies.  
 
Capture domain 
semantics, models, 
schema and 
instance data 
within each 
community's native 
language(s). 
 

Apply the mathematics 
of Information Flow 
(IF), Chu Spaces and 
Transforms and Galois 
lattices toward 
automated derivation of 
mappings between 
multiple languages, 
between multiple 
ontologies, between 
ontologies and 
schemas, and between 
multiple schemas. 

Manage language 
definitions, domain 
semantics, and mappings & 
transformations of these 
within mainstream relational 
database management 
systems. 
 
Process and manipulate the 
above using standard 
database methods, e.g., 
SQL. 

W
h

y 

Tolerate 
heterogeneity 
within and across 
communities while 
simultaneously 
managing and 
manipulating 
community artifacts 
in a unified fashion. 

Test data, examples 
and common instance 
data can provide the 
reference points from 
which advanced 
mathematics can 
automate the derivation 
of semantic mappings 
and transformations. 

Exploit commodity 
infrastructure. 
 
Process and manipulate 
data where it already lives. 
 
Build semantic applications 
following current best 
practices, skills and tooling. 
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First Stage 
 Definition Derivation Execution 

K
ey

 t
a

sk
s 

Extend OWL-FA 
into OWL-RA 
 
Develop idioms for 
supporting Power 
Types in an OWL-
RA context 
 
 

Develop and apply suite 
of test cases and test 
"data" for semantic 
mappings. 

Manage OWL-RA artifacts in 
RDBMS by integrating and 
extending vendor's existing 
XML, RDF and object 
relational capabilities. 
 
Implement Chu Space 
algorithms in SQL 

R
e

su
lt

s 
 

Foundation for 
heterogeneous 
interoperability. 

Interoperability across 
diverse schemas and 
models using distinct 
domain semantics 
expressed in disparate 
languages. 

Scalable interoperability 
solution easily deployable 
far and wide. 

 
 

 
 
Note to the reader: A fully worked example of the Stage One approach and its 
concepts and technology may be found in the Worked Example of First Stage  
section of this paper. 
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Destinations of the First Stage 
• Support for an open-ended collection of languages used to represent 

domains and their semantics, e.g., OWL, UML and EDOC employed to 
model systems and artifacts within the financial management domain 

• Select an ontology language to serve as the initial meta language for the 
framework 

o The chosen ontology language becomes the common meta 
language for the community of languages, i.e., a common means 
to: 
§ Represent each language's definition 
§ Represent language artifacts 
§ Manage language artifacts 

o Employ OWL-DL as the "base" ontology language, based on its: 
§ Expressivity 
§ Decidability 
§ Serializations, particularly RDF/XML 
§ Web support, e.g., ontology elements as publishable web 

resources 
§ Standardization 
§ Community 
§ Growing tool support: visual editors, repositories, reasoners 
§ Mindshare vis-à-vis the Semantic Web  

o Define OWL-RA, as defined by Von Schweber, as an extension of 
the base, exhibiting a Relative metamodeling Architecture. 
§ OWL-RA is based on the ideas of OWL-FA (Fixed layer 

metamodeling Architecture) [Horrocks01], [Horrocks03], 
[Motik05], [Pan2003], [Horrocks05]  

• OWL-FA is decidable and supports metamodeling 
• OWL-FA extends OWL-DL based on the extensions of 

RDF-FA to correct RDF's non-standard semantics 
while making it suitable for metamodeling 

§ OWL-RA will define compartments for instances, classes, 
power types [Cardelli87], [Brodnik91], etc. and the 
interrelationships between compartments, all in a fashion 
compatible with DL reasoners (based on but relativizing 
OWL-FA's fixed layered architecture)  

§ Benefits include: 
• Decidability (compared with an OWL-Full approach to 

support meta modeling) 
• Standard semantics (compared with the non-standard 

semantics of OWL-Full and RDF) 
• Support for metamodeling without the straightjacket 

of a linear metalevel stack; an arbitrary modeling 
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element may be related to multiple meta constructs 
without these comprising a linear stack. 

o Define an OWL-RA idiom to accommodate many-to-many mapping 
of terms to classes/properties, thereby achieving a separation of 
concerns between terminology and semantics, cleanly allowing for 
synonyms and homonyms. 
§ Idioms are language patterns that create a dialect of use  

• For example, Sergey Melnik and Stephan Decker 
present six independent RDF graphs that represent 
the commonly held (but non factual) belief that 
Mozart composed the Requiem with the assistance of 
Salieri [Melnik2004]. We see each of their 
representations employing a distinct language idiom 
that may be objectified and made explicit. 

• Each language idiom may be represented as an 
ontological template that does not require 
quantification over classes and therefore avoids the 
need for higher order logic [Goguen 2005, private 
communication] 

• Define each community language using the framework's meta language 
o Define Semantic Core using the framework's meta language; this 

produces an ontology of Semantic Core, or more generally, a 
"theory" of Semantic Core. 

o Define each community language using the framework's meta 
language. This produces an ontology of each language; more 
generally we refer to each product as a "theory" of its respective 
language. 

o Obtain ontology class and property instances for each language 
theory: 
§ For a language theory (a theory that represents a language) 

an instance (also called a token) of the theory is a sign (in 
the sense of Pierce's triadic semiotics) for a domain concept, 
e.g., Unit Price; it is not a language's representation of the 
domain concept, e.g., a UML attribute or OWL-DL class 
representing Unit Price. 

§ For a domain theory (a theory of a specific domain) an 
instance is a sign for a domain entity or relationship; it is not 
an OWL instance or a UML data element, etc. 

o Derive an IF-classification from each instantiated ontology (where 
an instantiated ontology may represent a domain theory or a 
language theory). This idea first appeared in IF-MAP (see below). 

• Derive mappings between community languages and also between 
domain ontologies expressed in community languages 
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o Represent each ontology mapping (between pairs of ontologies) as 
an Information Flow (IF) [Barwise97] infomorphism between their 
respective derived IF classifications. (See Appendix I - Information 
Flow (IF) proto-primer.) 
§ The idea of merging ontologies in a bottom-up fashion 

based on ontology instances appeared in FCA-Merge 
[Stumme01]. 

§ FCA-Merge employs FCA'S (Formal Concept Analysis) formal 
context, a construct essentially equivalent to a classification 
of Information Flow or a Chu Space. FCA–Merge then forms 
a Galois lattice over a merged formal context. In comparison, 
the method we employ in Stage 1 of the roadmap innovates 
and extends upon FCA-Merge in two ways. First, we 
represent the merged Chu Spaces as relations in a relational 
database management system, enabling the mappings to be 
derived by SQL stored procedures directly within the 
database, thus enabling wide-spread application of our 
approach. Second, we apply the method recursively: (i) first 
to derive a language map, and then within the context of the 
"merged" language (as defined by the language map) we (ii) 
derive a domain map. Thus the method we employ may be 
used to align, merge and map distinct ontologies expressed 
in distinct ontology languages. Further, our recursive 
application methodology may be continued, e.g., to align 
distinct schemas/models grounded within distinct ontologies 
expressed with distinct language idioms of distinct languages. 
This makes our approach applicable to the general class of 
interoperability scenarios encountered in the real world. 

§ The idea of representing ontologies as IF Classifications and 
ontology alignment/merge mappings as IF infomorphisms 
first appeared in IF-MAP [Kalfoglou05]. 

§ The IF-MAP approach extends the applicability and 
correctness of the FCA-Merge method to mapping situations 
where common instances may be unavailable, such as is 
often encountered when aligning a local or "spoke" ontology 
with a reference or "hub" ontology as hub ontologies 
frequently lack instances or instance data. IF-MAP, as it is an 
application of Information Flow to the problem of mapping 
ontologies, treats each ontology as a local logic. The local 
theory of a local logic may be used to derive "formal 
instances" that may then be utilized in the alignment process. 

§ The methodology of IF-MAP employs a generate-and-test 
approach and recognizes that ontologies have two overall 
groupings of elements: classes and relations. From a very 
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high level the IF-MAP algorithm first generates a candidate 
infomorphism between local and reference logics, applies the 
candidate infomorphism to the relations of the local and 
reference logics, and if this produces valid results then 
applies the same infomorphism to the classes of the local 
and reference ontologies and evaluates the mapping. 
Eventually the generate-and-test loop will identify one or 
more candidate infomorphisms that both respect the local 
and reference classifications and respect each one's 
constraints (the respective local theory). A slightly more 
detailed description of the IF-MAP algorithm follows. 

 
IF-MAP Algorithm 
1. Begin a "generate and test" loop. 

a. First attend to mapping relations. 
i. Generate a candidate infomorphism and apply it between a reference 

relation and a local relation (this generate step is a random selection from the 
classification of local instances according to a local relation). 

ii. Identify the consequence of the candidate infomorphism on arities (i.e., on 
the arguments of the relations, implied by the candidate infomorphism 
applied to relations). 

iii. Repeat this for the remaining relations until all relations of the reference and 
local ontologies are mapped. 

iv.  Consider the infomorphism arrived at by this process as a provisional 
infomorphism (there may be other possible infomorphisms and we do not yet 
know this is the best one to use)  

b. Now apply the provisional infomorphism to ontology classes and instances. 
i. Apply the provisional infomorphism in order to classify instances of the local 

ontology according to classes of the reference ontology. 
ii. Identify formal instances of the reference ontology whose classification 

(according to classes of the reference ontology) is identical to the 
classification of local instances (according to the classes of the reference 
ontology). The "connections" so identified determine the token map of local 
instances to reference (formal) instances. Furthermore, these connections 
respect the logic infomorphism between local theories because the formal 
reference instances "carry" the regular theory of the reference ontology. 

iii. If this identification fails or cannot be achieved then discard the provisional 
infomorphism and return to step 1.a.i, randomly select another infomorphism, 
and continue the process from there. 

iv.  With success promote the provisional infomorphism to working "logic 
infomorphism" and exit the generate and test loop. 

 

 
• The IF-MAP algorithm, while not computationally efficient (it has 

an order of complexity exceeding o(nlogn)), is applicable to 
smaller ontologies, hence its utility in a progressive alignment 
process (see Stage 2 of the roadmap for a discussion of 
progressive mapping). 

o Represent each IF-classification as a Chu Space [Pratt05a], 
[Pratt99].  
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§ A Chu space may be represented as a simple table of rows 
and columns 

§ Represented as a tabular data structure, each Chu Space 
may thus be managed and processed as an array in a 
programming language; a matrix, a relational database table, 
a spreadsheet, etc. 

§ Employ a workaround if the resulting Chu Space is not 
biextensional, e.g., add a column to distinguish otherwise 
duplicate rows; add a row to distinguish otherwise duplicate 
columns 

o Represent each infomorphism (between pairs of classifications) as 
a Chu Transform. 

 

 
o Represent each Chu Transform as a Chu Space 

§ Following all of these prescriptions means that a language, a 
domain ontology, a language mapping and a domain 
mapping may each be represented and processed as a Chu 
Space using a tabular data structure. 

§ In this way languages, ontologies and mappings may all be 
represented and processed using the same infrastructure, 
i.e., tooling and methodology. 

§ To represent a Chu Transform as a Chu Space requires that 
the source Chu Space be extensional, i.e., no duplicate rows, 
and the target Chu Space be separable, i.e., no duplicate 
columns. See workaround (above) when needed.  
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§ (See Appendix II – Representing Chu Transforms as Chu 
Spaces.) 

• Execute language and ontology definitions and mappings 
o Manage all Chu Spaces as relations in an RDBMS 

§ An abstract syntax, including a relational schema, is defined 
by which Chu Spaces may be embodied and processed as 
relations. 

§ A relational schema is developed or otherwise obtained to 
manage artifacts expressed in the framework's meta 
language (i.e., OWL-RA) 

§ A set of "model to text" mappings between the abstract 
syntax of the framework and the world of surface syntaxes 
is defined and supported by the facilities of the DBMS 
[Wigetman06] 

• Standardize on XML representations for surface 
syntaxes supported by an open-ended collection of 
XSDs (XML Schema Definitions) 

• Employ DBMS load operations to transform each XML 
surface syntax into the abstract syntax of DBMS-
resident Chu Spaces and ontologies in order to load 
artifacts into the DBMS 

• Employ DBMS SQL functions and/or stored procedure 
packages to serialize abstract syntax as XML surface 
syntaxes in order to export artifact from the DBMS 

§ Process relationally-embodied Chu Spaces using SQL, e.g., 
to navigate Chu Spaces, derive transformations/mappings, 
apply transformations/mappings, derive the Galois lattice 
(described in the Worked Example of First Stage  section 
below) over each Chu Space that represents a classification, 
etc. 

o Obtain/provide common instances for ontologies to be mapped, 
e.g., aligned and/or merged. 

o Employ a Chu Space embodiment of an "FCA-Merge"-like technique 
[Wille96], [Stumme01], [Priss05] to map two ontologies having 
common instances.  
§ Employ techniques, e.g., as supported by NeoLogical 

SURVEYOR [Von Schweber 2004] for knowledge surveying, 
to implement and extend FCA-Merge techniques to provide a 
scalable infrastructure. 

§ The infomorphism between two ontologies, say A and B, is 
represented as a classification of one ontology's tokens, say 
A's, according to the types of the other ontology, say B's 
(where this infomorphism is a Chu Transform represented as 
a Chu Space itself). The dual classification that classifies B's 
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token according to A's types may be recovered from the Chu 
Transform as Chu Space. [Vaughan Pratt 2005, private 
communication] 
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Second Stage – Collaborative Ontologies and Composable 
Language 

Second Stage 
 Definition Derivation Execution 

W
h

at
 

Develop a meta ontology 
of language concern 
dimensions to augment 
Semantic Core. This 
becomes a starting point 
for defining living 
languages, e.g., 
ontology languages that 
may be functionally 
extended by composing 
them with additional 
language components. 

Extend Information 
Flow, Chu Transforms 
and lattice methods to 
support progressive, 
incremental and 
collaborative mapping 
and interoperation. 
 
Provide the means for 
users to find common 
community 
"examples", i.e., IF 
tokens, that they can 
point to. 
 

Adapt and apply Web 
2.0 technologies 
(AJAX, RSS, P2P 
tagging, etc.) to 
implement 
collaborative semantics 
and collaborative 
interoperability, thus 
enabling semantics to 
be authored and 
revised in a web page 
within the user's work 
context. 

W
h

y 

Define, revise and 
extend language; fosters 
modularity with 
consistency; improves 
reuse and paves the way 
for additional automation 
of interoperation and 
more effective 
collaboration in future 
roadmap stages. 
 
Circumvent "lowest 
common denominator" 
interoperability, i.e., 
when the consumer's 
language is not 
sufficiently expressive to 
represent knowledge 
provided by a producer's 
richer source language. 

Realize "continuous 
improvement" in 
interoperability while 
keeping end points 
loosely coupled. For 
example, each user 
and community 
becomes free to 
independently evolve 
their own semantics, 
as in a user adding 
meta data to a web 
form so that they may 
provide additional, 
relevant data while 
relating this new data 
to existing community 
data, thus enabling 
interoperability. 

A move to 
collaborative methods 
requires light weight, 
agile implementations, 
e.g., to incorporate 
users into the process 
of developing, revising 
and mapping their 
semantics with the 
community's we 
cannot insist that the 
user install and learn 
thick client ontology 
tooling. Rather, a user 
must be able to simply 
go to a web site that 
provides all the 
capabilities they need 
without breaking the 
context of their work 
and their domain. 
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Second Stage 
 Definition Derivation Execution 

K
e

y 
ta

sk
s 

Extend Semantic Core 
with a meta ontology of 
language concern 
dimensions. 
 
Extend framework's 
meta language with 
composition operators. 
 
Explore and harvest e-
Connections research. 

Develop process for 
collaborative mapping 
by applying and 
extending progressive 
mapping techniques. 
 
Explore the derivation, 
simplification and 
application of "formal 
instances". 
 
Develop knowledge 
surveying application 
to survey community 
types and tokens 
within the user's 
context. 

Develop a collaborative 
web site using 
extended AJAX and 
related Web 2.0 
technologies for 
community semantics. 

R
e

su
lt

s 
 

Users and their 
communities freed from 
the constraints of rigid 
formalisms and centrally 
dictated mandates can 
interoperate without 
information loss. 

Progressive, 
incremental and 
collaborative mapping 
rather than mapping, 
alignment and 
merging that is all-or-
nothing, all-at-once 
and individual and 
isolated. 

Users and user 
communities on the 
knowledge fabric take 
control of their 
semantics and meta 
data without breaking 
interoperability, i.e., 
think locally, 
interoperate globally. 

 
• Collaborative ontology mapping and collaborate-to-interoperate 

o Progressive mapping of language theories and domain theories 
§ In Stage 1 we align, merge and generally map ontologies in 

their entirety and all-at-a-time. While this is an excellent 
strategy to preserve integrity and consistency it leaves open 
the question, for example, of how changes may be applied 
to large ontologies that have already been mapped without 
breaking the existing mapping. 

§ Here in Stage 2 we aim to enable an incremental mapping of 
ontologies, say for example, as the ontologies change and 
evolve. 

§ The IF-MAP method pioneered by Kalfoglou and 
Schorlemmer has been extended by its authors to support 
what they call "progressive" mapping. [Schorlemmer05a] 
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§ In Stage 2 we embrace and extend progressive mapping 
methods but implement and operate such in our Chu Space 
formulation (rather than their native Information Flow form). 
Part of our extension is to apply progressive alignment to 
language theories as well as domain theories operating in a 
merged language context. 

o Collaborative mapping  
§ Once the framework has gained support for progressive 

ontology alignment and mapping we can build upon it to 
enable collaborative mapping. 

§ Collaborative mapping is based on the idea that each 
individual and each group of individuals (regardless of 
hierarchic level) likely possesses their own ontology and 
potentially their own language (at the very least, their own 
language idioms). This makes for a vast knowledge fabric of 
ontologies, idioms and languages, with individuals mapped 
to each other and to the communities of which they are a 
part, plus communities mapped to other communities and to 
the subsuming communities of which they are a part. 

§ Collaborative mapping is the application of automated, 
progressive mapping techniques to maintain this "social" 
knowledge fabric, such that end-to-end interoperation 
becomes possible across the fabric but without the tyranny 
of mandatory global ontologies, idioms and languages (on 
any scale). 

§ Power is pushed out to the network's edge rather than 
concentrated (and mandated) at the center. This inextricably 
brings the user into control of not only their data but also 
their metadata and potentially the language they use to 
express knowledge. Upper ontologies become emergent 
artifacts from the view of collaborative mapping. 

§ To so enable users and user communities requires that they 
be empowered with the necessary tools. But thick client 
applications, designed for knowledge engineers and 
developers, that require training, skill and significant 
compute resources, just won't do. 

§ To push the power to the edge requires that we at minimum 
emulate, if not outright adopt, the Web 2.0 technologies that 
are leading the charge in social computing. [O’Reilly05] 
Prime among these are AJAX (Asynchronous Javascript and 
XML) as it brings rich GUI functionality, like drag and drop, 
to browser-based applications without the need for plug-ins, 
applets or the like. 
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§ We must be very conscious when selecting, adopting and 
applying Web 2.0 technologies, as they commonly make 
assumptions that are not entirely compatible with the 
objectives of this effort. For example, AJAX assumes network 
connectivity to the server in order to function; disconnected 
work using an AJAX approach is not something one gets “out 
of the box”. 

§ The approach we advocate for the use of Web 2.0 
technologies involves replicating light-weight server 
components to the local client machine; this may include a 
web server and a persistent store. This architectural pattern 
was applied to 3D computing and VR in [Von Schweber 
1998a] and [Von Schweber 1998b]. This marries the 
benefits of Web 2.0 with disconnected operation, and it 
gains additional concomitant advantages. 

§ Specific Web 2.0 products that may be useful towards 
building collaborative mapping: 

• Tibco General Interface 
• Morfik Javascript Synthesis Technology and WebOS 

Apps Builder 
• ICESOFT ICEfaces 
• Sun Java Studio Creator 

§ Using our flexibly-connected variant of Web 2.0 we must 
enable a user or user community to extend their domain 
ontology without breaking the context of their work or task. 

§ For example, a user filling out a web form may be unable to 
enter relevant data for lack of an appropriate form field. 

§ Said user should be able to dynamically create a new field 
and populate it with the relevant data, but in and of itself 
this is insufficient and hazardous. From the system's point of 
view the user created field constitutes new meta data of 
which it knows nothing, potentially a new element of the 
system's domain ontology. 

§ There are two overall ways that suggest themselves for 
handling this situation; each makes a different set of 
assumptions. 

• If we assume the user has no personal domain 
ontology then we want to induce the user into 
educating the system about the newly created field, 
specifically the domain ontological concept that 
defines the field. In the spirit of the instance-based 
mapping approach we advocate in this roadmap we 
must obtain from the user instances of this concept, 
ideally "common" instances already known to the 
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system's domain ontology. This initiates progressive 
mapping between the newly suggested user concept 
and the system's existing domain concepts. 

• If we assume the user possesses their own personal 
domain ontology (with instances) then we initiate 
progressive mapping between the user's domain 
ontology and the system's. 

§ In both of these cases we employ knowledge surveying, e.g., 
NeoLogical SURVEYOR, to adaptively identify the most 
suitable contexts for the progressive mapping. Knowledge 
surveying may reveal common instances (between user and 
system) and one or more existing concepts in the system's 
domain ontology that may be used to define the new field. 
In any event the user is enabled to provide additional data 
that becomes understandable to the system and its other 
users. 

§ We recommend exploring the use of personal ontologies 
(the second scenario above) for each user and user 
community. 

o Construct formal instances for each ontology. This is critically 
important when an ontology possesses no instances in common 
with another that it is to be aligned/merged with, as for example 
with a hub ontology, e.g., Semantic Core. 
§ IF-MAP refers to a fundamental theorem of representation of 

Information Flow that provides the basis for constructing 
formal instances. This is the Representation Theorem 9.33 of 
Barwise and Seligman. 

§ A set of derived formal instances reflect the theory of the 
local logic, i.e., they manifest the constraints obeyed by the 
types of the classification, but they are typically awkward (to 
look at one it is not at all obvious what they mean out of 
context, compared to say, a domain token). 

§ Explore the use of the structure of Semantic Core to simplify 
the structure of the formal instances derived from it so that 
such formal instances are more user friendly. Note: 
Semantic Core has already simplified the mapping by 
identifying the core constructs of each supported language 
(simplified as compared with a simple amalgamation of all 
constructs from the languages supported) 

§ Even when common instances are available, formal 
instances reify the local, potentially regular theory of the 
ontology and the infomorphism then respects the local 
theories, hence it is a logic infomorphism. Thus formal 
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instances are valuable even for scenarios that posses 
common instances. 

• Composability 
o e-Connections (note e = Epsilon) [Grau04], [Grau05] to tease apart 

modules and represent the "system" of ontology modules (noting 
that these ontology modules may represent language semantics or 
domain semantics). 

o Language concern dimensions populate a meta ontology as 
language-specific Powertypes, (see Appendix III – Power Types) 
e.g., for decomposing Semantic Core on a finer scale and 
supporting Multi Dimensional Separation of Concerns (MDSOC). Key 
dimensions include: 
§ Abstract syntax constructors – the elements of the syntax of 

a language, including both logical and non-logical symbols. 
§ Idioms – the "design patterns" of a language, designating 

and itemizing the many ways a language may be used (e.g., 
Melnik and Decker showed six ways that RDF may be used 
to express the commonly held (but false) belief that Mozart 
composed the Requiem with the assistance of Salieri). 
[Melnik2000] 

§ Axiomatic Semantics – the axioms (i.e., sentences) that 
collectively define a language's semantics 

§ Proof Theories – the inference patterns supported by a 
language that produce valid conclusions, e.g., modus ponens. 

o Galois lattice over the classification of language tokens by language 
types 
§ In Stage 1 we form the Galois lattice over a merged Chu 

Space (we do this for both language and domain mappings). 
§ Here in Stage 2 we (additionally) form a Galois lattice over a 

merged Chu Space where language concern dimensions are 
types and concern dimension values are tokens. 

§ This parallels the Information Flow Framework's (IFF) 
Lattice-of-Theories (LoT) but at the language level (the IFF 
LoT operates at what we've been calling the domain level, 
albeit the "upper" part. 

§ This construction sets the stage for the composition of 
language definition (molecules) from language elements in 
the spirit of Managed Logic (see Appendix IV – Managed 
Logic). 

o Moving in the direction of a composable axiomatic semantics 
§ Extend each IF classification of an ontology (domain or 

language) to a full local logic 
• The local logic adds to the classification all of the 

constraints met by types of the classification. 



Roadmap for Semantics in Netcentric Enterprise Architecture 26 of 110 
Prepared for the Office of the CTO, US General Services Administration  2/2/2006 
Erick Von Schweber   Synsyta LLC   © Synsyta 2006 All Rights Reserved        erick@synsyta.com 

• Constraints are represented as sequents. 
§ Extend each infomorphism between ontologies (domain or 

language) to a full logic infomorphism between local logics 
• A logic infomorphism is an infomorphism whose type 

mapping respects the constraints of the local logics. 
o Knowledge surveying employed to survey language features 

(represented as language concerns) in order to select an existing 
language, choose components to extend an existing language or 
compose a new one. 
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Third Stage – Living, Liaising Hubs 
 

Third Stage 
 Definition Derivation Execution 

W
h

at
 

Lift IF-
Classifications/Chu 
Spaces to full 
Institutions over two 
phases. 
 

Chu Transforms lifted 
to Institution 
Morphisms. 

Phase I: Manage each 
Institution natively but 
"flatten" to a Chu 
Space for processing 
using infrastructure of 
Stages 1 & 2 
 
Phase II: Extend 
infrastructure to 
process Institutions 
natively. 

W
h

y 

Explicitly incorporate 
syntax into the 
mathematical 
representation and 
mapping formalism. 

Derive mappings 
between arbitrarily 
complex syntaxes. 

Exploit infrastructure of 
Stages 1 & 2 then 
extend it. 

R
e

su
lt

s 
 

Modularization of syntax 
and syntax mapping. 
 
Composability of 
language definition, 
including syntax and 
semantics. 

Greater generality of 
mapping and semantic 
interoperability. 

Earlier support for 
complex syntaxes (far 
beyond XML). 
 
Enablement of self-
adaptive "living" hubs. 

 
• Lifting of classifications to Institutions 

o Chu Spaces and Chu Transforms are extended to become full-
fledged Institutions [Goguen06] and Institution Morphisms 
(respectively), thus providing a framework for defining languages, 
logics and ontologies via formal composition. [Schorlemmer05b], 
[Kent2004], [Voutsadakis05], [Sernadas2005] 
§ Local logics extended to become Institutions 

• IF Classifications, local logics and Chu Spaces do not 
formalize the relationship of their types and tokens to 
the syntactic context with which they are articulated. 

• An Institution (with regard to the Theory of 
Institutions) extends the type/token classification 
structure of Information Flow and Chu Spaces: 

o An explicit set (alternatively a category), called 
Sign (for signature), explicitly captures the 
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syntactic context of a classification. Note that 
Sen can express syntactic elements of 
arbitrarily complex structure. 

o The set of types of a classification are lifted to 
a set (or category) of sentences, called Sen, 
expressed using the syntactic elements of Sign. 

o The set of tokens of the classification are lifted 
to a set (or category) of models, called Mod. 

o The classification of tokens by types becomes a 
satisfaction relation between models and 
sentences as expressed in the syntactic 
elements of Sign. 

o Category theoretic functors map Sign to Sen 
and Sign to Mod. 

o An Institution therefore represents the truth 
semantics of a logical system but in a fashion 
where the syntax of the logical system is made 
explicit. 

o Acting between Institutions (as just described 
above) are Institution Morphisms, the 
Institutional analog of IF logic infomorphisms 
and Chu Transforms. 

o A key distinction between an Institution 
Morphism and its less expressive analogs is 
that an Institution Morphism can express the 
mapping of truth semantics under change of 
notation (syntax), as when moving (mapping) 
from FOL to HOL or from OWL-DL to FOL. 

• In Stage 3 we introduce a set of richly structured 
signatures to support arbitrarily complex and relative 
meta-relations and compartments for Powertypes and 
other, as yet unanticipated domain semantics. 

§ Logic Infomorphisms are extended to become Institution 
Morphisms 

o Galois-ified Institutions (parallels Institutional IFF LoT) 
§ Just as in Stage 1 we form the Galois lattice over a merged 

Chu Space (for language and domain theories) we may also 
form the Galois lattice over an Institution or a merged 
Institution (a merged Institution is a construct similar to a 
merged Chu Space, a step along the path to obtaining an 
Institution Morphism). We call this a Galois-ified Institution 
and its vertices we call G-frames. 

§ A G-frame is analogous to a formal concept in FCA (Formal 
Concept Analysis) but may be obtained over arbitrary logics 



Roadmap for Semantics in Netcentric Enterprise Architecture 29 of 110 
Prepared for the Office of the CTO, US General Services Administration  2/2/2006 
Erick Von Schweber   Synsyta LLC   © Synsyta 2006 All Rights Reserved        erick@synsyta.com 

(whereas FCA only works over FOL). Each G-frame 
represents a Galois connection between a set of sentences 
(from Sen) and a set of models (from Mod). Note: a Galois 
connection is established when certain closure relations hold. 

• Lifting may be accomplished in two phases 
o Phase I – Define and manage an Institution using Institution-

specific data structures then pre-process each Institution to flatten 
to a classification/Chu Space for reasoning using the infrastructure 
developed during stages one and two of the roadmap. 

o Phase II – Process and reason against native Institution(s), i.e., 
extend the infrastructure developed during stages one and two to 
natively manage and process Institutions. 

• Institutionalize the meta ontology of language concern dimensions (using 
a single mathematical system to formalize it, i.e., a single meta language) 
to support the definition and composition of languages/logics and 
ontologies/models across a concern space of four dimensions. 

• Define a category of theories as an enrichment of the LoT whereby the 
LoT is a broad category (i.e., same set of objects) embedded in the 
category of theories and an edge of the lattice may represent not only 
inclusion but a more general morphism. Plus there may be additional 
morphisms added between the vertices of the lattice. 

o Define Institutional signature to represent linear stack, or spiral, 
recursive construction to support an arbitrary number of roles, etc.; 
even to support compartments for Powertypes 

o For this relative meta-structure (with compartmented Powertypes) 
as defined within the Institution's signature: preprocessing 
"flattens" or "selects" only two adjacent meta regions (single 
compartment) before submission to a DL reasoner. 

• Upgrade the Institution's set of Sentences to a category of sentences 
where morphisms between sentences constitute proofs, e.g., from these 
sentences the morphisms, respecting associativity, derive a new sentence 
(the conclusion) from the previous sentences (the premises). 
[Mossakowski2005], [Pfenning91] 

o Use the inference patterns to generate the free category which 
includes the morphisms as proofs 

o See Categorical Logic in [Mossakowski2005]. 
o The more general case is the Category of sets of sentences, e.g., to 

support Infinitary logic with an infinite number of sentences. 
• Explore, compare and contrast Galois-ified Institutions coupled with 

Grothendieck flattening against fibered, Institutional IFF 
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Fourth Stage – Living, Liaising Languages 
Destination: Knowledge culture supporting co-evolution and symbiosis 
 

Fourth Stage 
 Definition Derivation 

W
h

at
 

Lifting of Institution to Charters and 
Parchments  
 
Model Theoretic Semantics is added as 
a dimension of concern to the MDSOC 
Institution supporting decomposing and 
recomposing Model Theoretic Semantics 
(brings total number of dimensions to 
5). 

Institutions are derived from 
Charters and Parchments, 
whereby a Parchment is used 
to generate a Charter and in 
turn an Institution. 

W
h

y 

Support for multiple meta-mathematics 
- opening up single meta mathematics 
(mathematical system of the 
framework) to community of meta 
mathematics that are interoperable with 
translations (and senses of equivalence) 
defined between them. 

Greater generality and 
flexibility for framework 
implementers. 

R
e

su
lt

s 
 

Greater generality. 
 
No reliance on a single, common meta 
mathematics. 

Community of interoperable 
interoperation frameworks, 
each of which has nearly 
unlimited freedom of 
implementation choices. 

 
Potential test cases to use during development of Stage 4 

• Add modal operators [(necessary, possible) | (always, sometimes)] with 
propositional logic as base 

o Need to define how modal operators combine with propositional 
symbols 

o E.g., Axiom says *always is not sometimes not* 
o This is motivation for explicit operators to add, delete, rename, etc. 

within the Institution. 
• Enriching a certain negation construct in a logic requires a change in the 

symbol used for negation. 
o Use tilda (~) if it's not an involution and the standard square 

negation bracket (¬) if it is involution. 
o This can be enforced by a theory morphism, but can it be 

expressed with only lattice inclusion for a sufficiently rich lattice 
structure? 
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Worked Example of First Stage Approach 
The worked example is intended to serve several purposes: 

• Demonstrate the applicability of several mathematical tools to the problem 
of interoperability across distinct ontologies and languages within a 
domain of interest to the readers of this paper. 

• Provide accessibility to and understanding of these mathematical tools 
sufficient to promote appreciation of their relevance, applicability and 
power. 

• Illustrate that such mathematical tools and approaches are not reserved 
for researchers in ivory towers but rather may be gainfully employed 
within contemporary software environments, e.g., XML, DBMS and 
modeling and ontology languages. 

 
It is beyond the scope of this paper to address all the details and complexities of 
the specific problem we work in the example; indeed, doing so would elide the 
very principles we wish to illuminate. Following the example we will outline some 
of the details and complexities to be addressed in a proof of concept. 
 
A note on terminology. Language developers use a variety of terms to designate 
the types and tokens of their languages. The semantic web community uses the 
term ontology to designate the classes and relations of their languages and the 
term individuals to designate the tokens. The Object Management Group 
employs the term model when referring to the classes and relations of UML and 
MOF. And map refers to these same kinds of entities for the topic maps 
community (and there are many more of such communities, each with their own 
terminology). Hereinafter we will use the term theory to refer to ontologies, 
models, maps and the like. Our justification for use of the term theory is that 
ontologies, models, maps and the like are all systems of constraints, 
equivalencies and implications over a universe of discourse; it has also been 
shown that each of these may be represented as a theory in a suitable logic. 
Furthermore, theories may be about anything; to avoid confusion we will 
distinguish between a theory of a language, say of OWL-DL, versus a theory of a 
domain, say of receivables accounting. 
 

Worked Example part one – Language Map 
1) Select two languages to map, a source and a target. For this example we 

will use UML Class and OWL-DL. 
2) Select a meta language: we use RDF for the example (more generally, 

OWL-DL or OWL-FA). 
3) Use the meta language to define the language constructs of the source 

language.  For this example we define an RDF theory of UML class 
modeling. 
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a. The source language theory should include a number of language 
instances. In this usage a language instance is a sign that 
designates a concept of a domain entity or relationship, such as a 
purchase order line item, a line item attribute, the relationships that 
connect a line item with each of its attributes, etc. 

 
First we assert that that UML class and attribute are "things" and represented as 
RDFS classes. We also assert that a UML class "is related to" a UML attribute; we 
represent "is related to" by defining an RDF property. For clarity we omit 
namespaces in the RDF markup of our example. 
 

<rdfs:Class rdf:about="UML_Class"> 
 <rdfs:subClassOf rdf:resource="thing"/> 
</rdfs:Class> 
 
<rdfs:Class rdf:about="UML_Attribute"> 
 <rdfs:subClassOf rdf:resource="thing"/> 
</rdfs:Class> 
 
<rdf:Property rdf:about="is related to"> 
 <rdfs:domain rdf:resource="UML_Class"/> 
 <rdfs:range rdf:resource="UML_Attribute"/> 
</rdf:Property> 

 
Next we assert that certain domain concepts may be represented by UML class 
and attribute constructs and assert what owns what. 
 

<rdf:Description rdf:about="PO"> 
  <rdf:type rdf:resource="UML_Class"/> 
</rdf:Description> 
 
<rdf:Description rdf:about="POLineItem"> 
  <rdf:type rdf:resource="UML_Class"/> 
</rdf:Description> 
  
<rdf:Description rdf:about="POLineItem_Attribute"> 
  <rdf:type rdf:resource="UML_Attribute"/> 
</rdf:Description> 
 
<rdf:Statement> 
 <rdf:subject rdf:resource="POLineItem"/> 
 <rdf:predicate rdf:resource="is_related_to"/> 
 <rdf:object rdf:resource="POLineItem_Attribute"/> 
</rdf:Statement> 

 
4) Use the meta language to define the language constructs of the target 

language. For the example we create an RDF theory of OWL-DL; to 
control scope we only model the class and property constructs of the 
target language 
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a. The target language theory should include the same instances as 
were used in defining the source language theory. 

 
First we assert that OWL-DL class and property are things and are represented 
by RDFS classes. We also assert that one OWL-DL class is related to another 
OWL-DL class by an OWL-DL property; we represent "is related to" by defining 
an RDF property. 
 

<rdfs:Class rdf:about="OWL-DL_Class"> 
 <rdfs:subClassOf rdf:resource="thing"/> 
</rdfs:Class> 
 
<rdfs:Class rdf:about="OWL-DL_Property"> 
 <rdfs:subClassOf rdf:resource="thing"/> 
</rdfs:Class> 
 
<rdf:Property rdf:about="is_related_to"> 
 <rdfs:domain rdf:resource="OWL-DL_Class"/> 
 <rdfs:range rdf:resource="OWL-DL_Class"/> 
</rdf:Property> 

 
Next we assert that certain domain concepts (the common instances of this part 
of the example) may be represented by OWL-DL classes and what is related to 
what. 
 

<rdf:Description rdf:about="PO"> 
  <rdf:type rdf:resource="OWL-DL_Class"/> 
</rdf:Description> 
 
<rdf:Description rdf:about="POLineItem"> 
  <rdf:type rdf:resource="OWL-DL_Class"/> 
</rdf:Description> 
  
<rdf:Description rdf:about="POLineItem_Attribute"> 
  <rdf:type rdf:resource="OWL-DL_Class"/> 
</rdf:Description> 
 
<rdf:Statement> 
 <rdf:subject rdf:resource="POLineItem"/> 
 <rdf:predicate rdf:resource="is_related_to"/> 
 <rdf:object rdf:resource="POLineItem_Attribute"/> 
</rdf:Statement> 

 
5) Define a relational schema for the meta language. The relational schema 

will be used to manage and manipulate RDF theories, i.e., actual ontology 
classes, properties and ontology instances. Oracle 10gR2 includes a 
schema for RDF ontologies within Oracle Spatial; for the mapping process 
we can use the Oracle schema for RDF. 

6) Load the RDF theories of source and target languages into the RDBMS 
using the relational schema for RDF. 
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7) Interim summary: At this point in the process we have two languages 
defined using a common meta language that "classifies" common 
instances. 

8) For the purpose of the language mapping we treat as types the constructs 
of source and target languages and as tokens the common instances. For 
this example the class and attribute constructs of UML and the class and 
property constructs of OWL-DL constitute types. The name of source and 
target types are "indexed" as needed to guarantee uniqueness and 
prevent name collisions, e.g., UML_Class for UML class and OWL-DL_Class 
for OWL-DL class rather than simply "Class" for each (which would indeed 
cause a collision). 

9) Each language's types and tokens, plus its relationship between its types 
and tokens, constitutes a classification (in the vernacular of Barwise and 
Seligman's Information Flow). A classification captures the semantics of 
the language to an extent determined by the set of known tokens; new, 
previously unseen tokens may change the semantics (the semantics of a 
classification is not omniscient). 

10) We represent each classification (source and target) as a separate Chu 
Space, a tabular structure of rows and columns. Tokens are represented 
as rows while types are represented as columns. The intersection of a row 
and a column is set to equal "1" if that token is of that type and is set to 
equal "0" otherwise. 

 
Source Chu Space UML_Class UML_Attribute U_is_related_to 
PO 1 0 0 
POLineItem 1 0 0 
POLineItem_Attribute 0 1 0 
POLineItem 
is_related_to 
POLineItem_Attribute 

0 0 1 

 
 
Target Chu Space OWL-

DL_Class 
OWL-
DL_Property 

O_is_related_to 

PO 1 0 0 
POLineItem 1 0 0 
POLineItem_Attribute 1 0 0 
POLineItem 
is_related_to 
POLineItem_Attribute 

0 1 1 

 
11) We merge the source and target Chu Spaces, thus representing a merged 

classification. The number of rows of the merged Chu Space is equal to 
the number of rows of the source Chu Space (and also equal to the 
number of rows of the target Chu Space) since the tokens are common 
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between the two Chu Spaces. The number of columns is equal to the sum 
of the number of columns of source plus target Chu Spaces as the types 
are, a priori, distinct. 

 
Merged Chu Space UML_ 

Class 
UML_ 
Attribute 

U_is_ 
related_to 

OWL-DL_ 
Class 

OWL-DL_ 
Property 

O_is_ 
related_to 

PO 1 0 0 1 0 0 
POLineItem 1 0 0 1 0 0 
POLineItem_Attribute 0 1 0 1 0 0 
POLineItem is related to 
POLineItem_Attribute 

0 0 1 0 1 1 

 
12) Form the Galois lattice over the merged Chu Space. 

a. The Galois lattice is a concept lattice; its vertices represent formal 
concepts over the merged Chu Spaces. 

b. Each formal concept represents a Galois connection between the 
formal concept's intent (set of types) and the formal concept's 
extent (the set of tokens). 

c. The Galois lattice represents the "global" classification over the 
Information Flow channel defined by the infomorphism between 
the two "local" (source and target) classifications. 

d. The vertices of the Galois lattice are therefore the types of the 
global classification. 

e. The set of types that constitute each formal concept's intent 
represent the language constructs that are merged by the language 
mapping as based on the classification of common tokens 
according to source and target types. 

 
Note: We carry on the following operations using a relational schema for 
representing and processing Galois lattices over Chu Spaces. The schema 
employs three relations: A master relation represents each lattice vertex as a 
tuple; a detail relation represents each type (Chu column entity) as a tuple; and 
another detail relation represents each token (Chu row entity) as a tuple. We do 
not show these embodiment details here but do show the functional effect. 
 
To form the Galois lattice from the merged Chu Space we first merge identical 
columns, i.e., columns that have the same values in every row. 
 
Source Chu Space UML_Class UML_Attribute U_is_related_to 

OWL-DL_Property 
O_is_related_to 

OWL-DL_Class 

PO 1 0 0 1 
POLineItem 1 0 0 1 
POLineItem_Attribute 0 1 0 1 
POLineItem is related to 
POLineItem_Attribute 

0 0 1 0 
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Next we merge identical rows, i.e., rows that have the same value in every 
column. 
 
Source Chu Space UML_Class UML_Attribute U_is_related_to 

OWL-DL_Property 
O_is_related_to 

OWL-DL_Class 

PO 
POLineItem 

1 0 0 1 

POLineItem_Attribute 0 1 0 1 
POLineItem is related to 
POLineItem_Attribute 

0 0 1 0 

 
Then we order the columns from left to right in descending order by total 
number of 1's (arithmetic, not logical sum). 
 
Source Chu Space OWL-DL_Class UML_Class UML_Attribute U_is_related_to 

OWL-DL_Property 
O_is_related_to 

PO 
POLineItem 

1 1 0 0 

POLineItem_Attribute 1 0 1 0 
POLineItem is related to 
POLineItem_Attribute 

0 0 0 1 

 
Not counting the top and bottom vertices we have four vertices in the Galois 
lattice over the merged Chu Space, one for each column. The Hasse diagram for 
the lattice is illustrated in the figure below. 
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Hasse diagram of the Galois lattice 
over the merged Chu Space

I

OWL-DL_Class

OWL-DL_Property
U_is_related_to
O_is_related_to

UML_Class UML_Attribute

F

POLineItem
is_related_to

POLineItem_Attribute

POLineItem_Attribute

PO

POLineItem

POLineItem_Attribute

PO

POLineItem

 
 

13) Recover the type map (one half of the IF infomorphism) from the intent 
of the formal concepts of the Galois lattice. This type map is the language 
map. 

 
We use the name CLTup to represent the portion of the Chu Language Transform 
that acts on types, mapping types of the source to types of the target. 
 

Language Map 
 

CLTup : UML_Class à OWL-DL_Class 
 
CLTup : UML_Attribute à OWL-DL_Class 
 
CLTup : U_is_related_to(UML_Class, UML_Attribute) à O_related_to(OWL-
DL_Class, OWL-DL_Class) {where type(O_related_to) = OWL-DL_Property 
 
We may now represent this mapping for arbitrary tokens of source and target 
types (as contrasted with the common instances we employed to derive the 
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mapping). We first generalize the tokens in each of the source and target Chu 
Spaces. 
 
Generalized source Chu Space for UML class UML_Class UML_Attribute owns 
S1, i.e., a UML class 1 0 0 
S2, i.e., a UML attribute 0 1 0 
S3, i.e., the owning of a UML attribute by a UML class   0 0 1 
 
Generalized target Chu Space for OWL-DL class & property OWL-DL_Class OWL-DL_Property 
T1, i.e., an OWL-DL ontology class 1 0 
T2, i.e., an OWL-DL property 0 1 
 
Next we represent the Chu Transform (that acts between the source and target 
spaces) as a Chu Space. We do this by classifying the tokens of the source 
according to the types of the target. However, to accomplish this without 
ambiguity the source Chu Space must be extensional, i.e., no duplicate rows, 
and the target must be separable, i.e., no duplicate columns. 
 
Generalized Chu Transform UML to OWL-DL 
(as Chu Space) 

OWL-DL_Class OWL-DL_Property 

S1, i.e., a UML class 1 0 
S2, i.e., a UML attribute 1 0 
S3, i.e., the owning of a UML attribute by a UML class   0 1 
 
We can recover the language type map, CLTup , from this Chu Transform as Chu 
Space (TS, or Transform Space, for short) as follows. For each token of the 
source, say S1, we find it in the TS and identify which columns have equal values. 
For S1 UML_Class in the source space has equivalent values to OWL-DL_Class in 
the TS; hence the transform takes UML_Class into OWL-DL_Class. The procedure 
is repeated for the remaining source tokens, S2 and S3, resulting in transforming 
UML_Attribute into OWL-DL_Class and the owning of a UML_Attribute by a 
UML_Class into an OWL-DL_Property. 
 
Note: In general, given an extensional source space, a separable target space 
and a Chu Transform represented as a Chu Space itself, it is also possible to 
recover the contravariant map, i.e., how tokens of the target map back to tokens 
of the source. Were we to do this here, in this particular example, we'd find 
there are two possible ways in which a specific OWL-DL class can be mapped to 
a specific UML construct: it can be mapped to a specific UML class or a specific 
UML attribute, with an OWL-DL property mapping to an owing relationship 
between a specific UML class and a specific UML attribute. To make this 
functional, i.e., resolve the choice, we would need to consider a wider array of 
tokens, consider additional UML language constructs as types (e.g., association) 
and potentially narrow the target from OWL-DL to OWL-DL using one or more 
specific language idioms, i.e., design patterns for language usage. 
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Worked Example part two – Domain Map 
1) The domain mapping process recapitulates the very same process used 

for language mapping but does so applied to domain types and tokens 
within the context of the language map. This last notion is central and 
critical. 

2) Select a source domain theory and a target domain theory; these must be 
expressed in a language pair for which a language map has already been 
derived. Of course the source and target domain theories may be 
expressed in the same language, in which case an identity map exists 
between the source and target languages. For our example we choose 
constructs from the domain of accounting, specifically purchase orders 
line items, expressed in UML Class for the source and a different 
conception of purchase orders line items for the target, expressed in 
OWL-DL. For the former we employ RosettaNet's Open Buying on Internet 
(OBI) community semantics; for the latter we use the Universal Business 
Language (UBL). 

 

UML class model of RosettaNet OBI 
(Open Buying on Internet) Order Item

OBI Order Item

PO101 Assigned Identifier
PO107 Product/ServiceID
PO104 Unit Price
PO102 Quantity Ordered
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OWL-DL ontology of UBL (Universal 
Business Language) Order Line Item

UBL Order Line Item

BuyersID

ID

Description

Quantity

PriceAmount

LineExtensionAmount

has_element

 
 
 

3) Source and target domain theories should possess common instances; 
here "instance" means a sign for a thing or concrete relationship in the 
domain of discourse. Common instances will comprise the tokens of the 
source and target domain classifications. For our example here we work 
with just a single purchase order line item instance; conventionally there 
would be many common instances. 

 

UML instance of RosettaNet OBI (Open 
Buying on Internet) Order Item

PO1138_1 : OBI Order Item

PO101 Assigned Identifier = Cust_123
PO107 Product/ServiceID = SKU_abc
PO104 Unit Price = $10
PO102 Quantity Ordered = 5 units
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Common instances of UBL Order Line 
Item expressed with OWL-DL 

 
Note: To simplify the markup for this example all properties are represented as 
object properties; "production" markup would also employ OWL-DL data type 
properties, e.g., to represent values for quantity and price amount. 
 

<rdf:Description rdf:about="PO1138_1"> 
<rdf:type rdf:resource="UBL_Order_Line_Item"/> 

</rdf:Description> 
 
<rdf:Description rdf:about="Cust_123"> 

<rdf:type rdf:resource="BuyersID"/> 
</rdf:Description> 
 
<rdf:Description rdf:about="SKU_abc"> 

<rdf:type rdf:resource="ID"/> 
</rdf:Description> 
 
<rdf:Description rdf:about="$10"> 

<rdf:type rdf:resource="Quantity"/> 
</rdf:Description> 
 
<rdf:Description rdf:about="5 units"> 

<rdf:type rdf:resource="PriceAmount"/> 
</rdf:Description> 
 
<UBLOrder_Line_Item rdf:about="PO1138_1> 
     <has_element rdf:about="Cust_123"/> 
     <has_element rdf:about="SKU_abc"/> 
     <has_element rdf:about="$10"/> 
     <has_element rdf:about="5 units"/> 
</UBLOrder_Line_Item> 

 
4) Partition the domain map into component maps according to the types of 

the global classification (as represented by the vertices of the Galois 
lattice formed over the merged language Chu Space – see Worked 
Example part one – Language Map). Each "global" type constitutes a 
shared language construct across the two languages; it is within each 
global type that we will map the two domain theories and their instances, 
global type by global type. The complete domain map is comprised of all 
the component maps taken together. 

a. The language map takes UML classes and attributes into OWL-DL 
class. Therefore one of the global types on the language level is 
class-attribute/class; it is the first component of the domain map. 

b. The language map takes ownership of UML attributes by UML 
classes into OWL-DL properties. Therefore the other global type on 
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the language level is ownership/property; it is the second 
component of the domain map. 

5) To derive each domain component map we will derive a pair of 
classifications, one for the source domain and one for the target domain. 
For our example we will derive two such maps and therefore four 
classifications: 

a. A pair of domain classifications for the global language type class-
attribute/class; we'll call this the class-attr/class component of the 
domain map. 

b. A pair of domain classifications for the global language type 
ownership/property; we'll call this the owns/property component of 
the domain map. 

6) Define a relational schema for the source and target languages. 
a. We assume both source and target languages possess an XML 

serialization supported by an XML Schema Definition (XSD), which 
in the year 2006 is a reasonable assumption. 

b. Mainstream relational database management systems provide 
direct support for loading XML data into the RDBMS as well as 
serializing relational data as XML. Our example is based on the 
capabilities of Oracle 10gR2 which can register an arbitrary XSD 
and use it to create an object-relational schema within the Oracle 
RDBMS to manage and manipulate XML data that conforms to the 
registered XSD. 

i. We register the XSD for UML/XMI into Oracle, thus 
generating an object-relational schema to parse and manage 
UML models within the Oracle RDBMS. 

ii. We register the XSD for OWL-DL into Oracle, thus 
generating an object-relational schema to parse and manage 
OWL-DL ontologies within the Oracle RDBMS. 

7) Load the source and target domain theories into the Oracle RDBMS. 
a. Slight modifications of headers in the UML XMI and OWL-DL XML 

may be required, e.g., to point to the schema that was previously 
registered and thus the object-relational schema that the XML data 
will be loaded into. 

b. Load the XMI file for the UML model into Oracle. 
c. Load the XML file for the OWL-DL ontology into Oracle. 

8) Interim summary and look ahead: We may now use SQL to define 
relational joins by which each global language type (from the relationally 
embodied Galois lattice of part one) is employed to join the merged 
source and target language constructs with their respective domain theory 
class-attr/class or owns/properties and domain instances. We use these 
SQL statements in the next step to derive our four domain classifications. 
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9) Derive the four domain classifications as Chu Spaces from their respective 
domain theory. The name of source and target types are indexed as 
needed to prevent name collisions. 

a. For the class-attr/class component of the domain map we derive: 
i. A Chu Space (classification) of common domain instances as 

tokens according to UML classes and attributes in the source 
domain model. 

ii. A Chu Space (classification) of common domain instances as 
tokens according to OWL-DL classes in the target domain 
ontology.  

 
Chu Space 
of UML 
classes & 
attributes 

OBI 
Order 
Item 

PO101Assigned 
Identifier 

PO107 Product/ 
ServiceID 

PO104 
Unit Price 

PO102 
Quantity 
Ordered 

PO1138_1 1 0 0 0 0 
Cust_123 0 1 0 0 0 
SKU_abc 0 0 1 0 0 
$10 0 0 0 1 0 
5 units 0 0 0 0 1 
 
Chu Space of 
OWL-DL 
classes 

UBL 
Order 
Line 
Item 

BuyersID ID Description Price 
Amount 

Quantity Line 
Extension 
Amount 

PO1138_1 1 0 0 0 0 0 0 
Cust_123 0 1 0 0 0 0 0 
SKU_abc 0 0 1 0 0 0 0 
$10 0 0 0 0 1 0 0 
5 units 0 0 0 0 0 1 0 
 

b. For the owns/property component of the domain map we derive: 
i. A Chu Space (classification) of common domain relationship 

instances as tokens according to the UML class ownership of 
UML attributes of the source domain model. 

ii. A Chu Space (classification) of common domain relationship 
instances as tokens according to the OWL-DL properties of 
the target domain ontology. 

 
Chu Space of UML class –attribute relations  owns 
(PO1138_1, Cust_123) 1 
(PO1138_1, SKU_abc) 1 
(PO1138_1, $10) 1 
(PO1138_1, 5 units) 1 
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Chu Space of OWL-DL property instances has_element 
(PO1138_1, Cust_123) 1 
(PO1138_1, SKU_abc) 1 
(PO1138_1, $10) 1 
(PO1138_1, 5 units) 1 
 

10) Form the merged Chu Space across the domain Chu Space pairs. 
a. Merge the Chu Space pair for the class-attr/class component of the 

domain map. 
b. Merge the Chu Space pair for the owner/property component of the 

domain map. 
c. Types for which there are no tokens are dropped from the space. 

 
Merged 
Class-
attr/class 
Chu 
Space 

OBI 
Order 
Item 

PO101 
Assigned 
Identifier 

PO107 
Product/ 
ServiceID 

PO104 
Unit 
Price 

PO102 
Quantity 
Ordered 

UBL 
Order 
Line 
Item 

BuyersID ID Price 
Amount 

Quantity 

PO1138_1 1 0 0 0 0 1 0 0 0 0 
Cust_123 0 1 0 0 0 0 1 0 0 0 
SKU_abc 0 0 1 0 0 0 0 1 0 0 
$10 0 0 0 1 0 0 0 0 1 0 
5 units 0 0 0 0 1 0 0 0 0 1 

 
Merged owns/property Chu Space owns has_element 
(PO1138_1, Cust_123) 1 1 
(PO1138_1, SKU_abc) 1 1 
(PO1138_1, $10) 1 1 
(PO1138_1, 5 units) 1 1 

 
11) Form the Galois lattice over each merged Chu Space. 

a. Each vertex of the Galois lattice over the merged class-attr/class 
Chu Space is a formal concept whose intent is the set of domain 
classes to be merged and whose extent is the set of domain 
instances of the merged class. We will call this the Class-Attribute 
lattice. 

b. Each vertex of the Galois lattice over the merged owns/property 
Chu Space is a formal concept whose intent is the set of domain 
properties or attributes to be merged and whose extent is the set 
of domain relations of the merged owns/property. We will call this 
the Relation lattice. 
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F

I

OBI Order Item

UBL Order Line Item

PO104 Unit Price

Price Amount

PO107 Product/
ServiceID
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PO101 Assigned
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PO102 Quantity
Ordered

Quantity

Class-Attribute Lattice
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F
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12) Recover the type maps (one half of the IF infomorphism) from the intent 
of the formal concepts of each Galois lattice (class and relation). These 
type maps together are the domain map. For the example we have: 

a. A map between specific UML classes and specific OWL-DL classes. 
b. A map between specific UML attributes and specific OWL-DL 

properties. 
 
We use the name CDTup to represent the portion of the Chu Domain Transform 
that acts on types, mapping types of the source domain to types of the target 
domain. 
 

Domain Map 
 
CDTup : OBI Order Item à UBL Order Line Item 
CDTup : PO101Assigned Identifier à BuyersID  
CDTup : PO107 Product/ServiceID à ID  
CDTup : PO102 Quantity Ordered à Quantity  
CDTup : PO104 Unit Price à PriceAmount  
 
CDTup : owns à has_element  
Note: As we saw in performing the language map (in part one) we may 
represent each component of the domain map as a Chu Transform as Chu Space. 
We leave this as a straightforward exercise for the motivated reader. 
 
Applied together the language + domain maps may now be used to: 

• Transform UML class models into OWL-DL ontologies for management 
in a semantic web repository, to post on the web, visualize with an 
ontology editing tool (e.g., Protégé), as content for a web page, 
semantic markup of a web service, or for input to a reasoning engine. 

• Transform OWL-DL ontologies into UML class models for management 
in a MOF repository, visualization and editing in a UML tool, or to apply 
within a model driven architecture effort. 

 
Specific details and complexities not addressed in this example but fully 
amenable to the approach include: 

• UML associations 
• UML association cardinality constraits 
• UML association navigability 
• OWL property > UML association 
• OWL property with cardinality constraint < UML association with 

cardinality = 1 
• Pair of OWL properties  with inverseof < UML association (undirected) 
• OWL property domain/range <> UML association end 
• … 
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This worked example focused on the mapping of distinct ontologies expressed in 
distinct languages, as depicted in the figure below. 
 

 
 
However the approach has much more general applicability. For example, the 
same methods may also be used to map schemas/models to the ontologies that 
semantically ground them, to map such schemas/models to each other across 
distinct users, systems and communities, and in the final analysis, to transform 
and migrate data represented by such schemas and models, as depicted in the 
next figure. 
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The method may also be applied to hub and spoke architectures as depicted next. 
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Next Steps: beginning the adventure 
 
With roadmap in hand its time to begin the journey. As it takes time to prepare 
ground and lay down road surface, we advocate starting with two activities in 
parallel; one to get moving and produce useful results, the other to prepare for 
the next stage. 
 

• First Stage - Proof of Concept 
– Run real mapping examples in RDBMS using SURVEYOR 

and advanced maths 
• Second Stage - R&D 

– Collaborative, progressive ontology mapping using 
SURVEYOR and Web 2.0 technologies 

• Communities of ontologies; emergent “consensus” 
semantics 

– Ontology of language concern dimensions as meta 
ontology to Semantic Core 

•  Composable languages 
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Appendices 

Appendix I - Information Flow (IF) proto-primer 
 
The coinage of IF consists of tokens and types, but these constructs are 
sometimes used in an unconventional manner. Unlike many logical systems, IF 
applications can (and periodically do) treat a class-like thing as a token and an 
instance-like thing as a type. That can lead to confusion on initial encounters with 
IF. 
 
IF emphasizes two key relationships amongst tokens and types. One is 
classification of a token by a type, e.g., the token Lassie is classified as of type 
Collie. The other relationship is consequence between types, e.g., type Dog is a 
consequence of type Collie in that any token that is classified of type Collie must 
necessarily be classified of type Dog. 
 
IF packages these two key relationships together into a local logic, defined by 1) 
a set of tokens, 2) a set of types, 3) a classification relation between tokens and 
types, and 4) the smallest, closed set of constraints on consequence relations 
(called a local theory, and, with a bit more constraint, a regular theory). 
 
A consequence relation of a local theory in IF is typically represented by a 
sequent. A sequent is written as a comma-delimited string of types that comprise 
the left hand side of the sequent, a symbol for the consequence relation (+), and 
another comma-delimited string of types that comprise the right hand side. 
Here’s an example of a sequent: car, convertible +  vehicle, muffin. A sequent is 
“read” in the following way: a token that is of type car AND also of type 
convertible is by consequence a token of type vehicle OR a token of type muffin. 
Commas on the left hand side are to be read as AND (conjunctively) while 
commas on the right hand side are to be read as OR (disjunctively) . 
 
The key concept of IF is an infomorphism, a pair of maps (functions) that enable 
information flow between two distinct local logics (I’ll refer to these local logics as 
L1 and L2). One of the maps takes types of L1 into types of L2; the other map 
takes tokens of L2 into tokens of L1 (the two functions are contravariant as they 
work in opposite directions). Critically and centrally, these two maps, along with 
each local logic’s classification rela tion, must fulfill a special contract. 
 

Imagine a rectangle: L1 is on the left side and L2 on the right; types 
occupy the upper vertices and tokens the lower (so the types of L1 
are in the upper left while the tokens of L2 are in the lower right). 
The left (and respectively right) edges represent the classification 
relations of L1 (and L2 respectively) while the top edge is the type 
map from L1 to L2 while the bottom edge is the token map from L2 
to L1. The two maps – the type map and the token map -  must be 
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adjoint (in order for the pair of functions to be an infomorphism). 
One path starts in the lower right, from a token tok2 of L2, the token 
map is applied to it moving up horizontally to the left, taking it to a 
token tok1 of L1. L1’s classification relation then moves us vertically, 
telling us that tok1 is classified as one of L1’s types, call it typ1. 
That’s one path. The other path says that if you start with typ1 in 
the upper left hand corner of the rectangular diagram, apply the 
type map to move horizontally to the right, you end up at one of 
L2’s types, we’ll call it typ2. For the pair of functions to be adjoint 
the token we originally started with, namely tok2, must be classified 
as of type typ2 (moving vertically up the right hand edge). 

 
When you put it all together the infomorphism simply says that the two maps 
respect each local logic’s classification of tokens by types; that’s the central tenet 
of IF. Because each local logic’s classification of tokens by types constitutes that 
local logic’s semantics, the infomorphism is, in short, a mapping between local 
semantics that respects each local semantics. 
 
IF also extends the idea of infomorphism into what it calls a logic infomorphism : 
adding to an infomorphism a constraint that the infomorphism must respect each 
local logic’s local theory, e.g., when you apply the type map to the types involved 
in a consequence relation that holds in L1 the resulting consequence relation 
must hold in L2. A simple example of this in the context of natural language is 
that if in English any token of type Siamese is by consequence a token of type 
cat then under the type map that takes Siamese to Siamois and cat to chat then 
any token of type Siamois must by consequence be of type chat. 
 
That a local logic includes both a classification of tokens by types plus a local 
theory (consequence relations) means that IF ties together the two traditional 
ways of defining semantics: model theoretic semantics and axiomatic semantics 
and a logic infomorphism constitutes a semantic mapping that respects both. 
 
See [Barwise97]. 
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Appendix II – Representing Chu Transforms as 
Chu Spaces 
Text by Erick Von Schweber and Vaughan Pratt (from private communication Dec. 
2005). Example by Erick Von Schweber. 
 
A Chu transform (f,f'):(A,r,X)->(B,s,Y) is standardly representable as a Chu space 
if and only if A is extensional and B is separable (T_0). 
 
The Chu space standardly representing (f,f') is (A,t,Y) where t(a,y) =  r(a,f'(y)) 
(= s(f(a),y) by adjointness of (f,f')). 
 

Chu Space Chu Transform as Chu 
Space 

Chu Space 

(A,r,X) (A,t,Y) (B,s,Y) 
 x1 x2 
a1 1 0 
a2 0 1  

 y1 y2 
a1 1 0 
a2 0 1  

 y1 y2 
b1  0 1 
b2 1 0  

Extensional, i.e., no 
duplicate rows 

 Separable, i.e., no 
duplicate columns 

 
For the Chu Transform defined by the adjoint pair of functions f,f' where f: A->B 
and f': Y->X as: 
f(a1) = b2   f(a2) = b1   f'(y1) = x1   f'(y2) = x2 
then s(f(a),y) = r(a,f'(y)) for all a in A and y in Y. 
 
For Y = {y1, y2} and A = {a1, a2} we have: 
s(f(a1), y1) = r(a1, f'(y1)) => s(b2,y1) = r(a1,x1) => 1 = 1 
s(f(a2), y1) = r(a2, f'(y1)) => s(b1, y1) = r(a2, x1) => 0 = 0 
s(f(a1), y2) = r(a1, f'(y2)) => s(b2, y2) = r(a1, x2) => 0 = 0 
s(f(a2), y2) = r(a2, f'(y2)) => s(b1, y2) = r(a2, x2) => 1 = 1 
 
Now, t(a,y) =  r(a,f'(y)) = s(f(a),y) for all a in A and y in Y, thus yielding: 
t(a1, y1) = r(a1,f'(y1)) = s(f(a1),y1) => t(a1,y1) = r(a1,x1) = s(b2,y1) => 1 = 
1 = 1 
t(a1, y2) = r(a1,f'(y2)) = s(f(a1),y2) => t(a1, y2) = r(a1,x2) = s(b2, y2) => 0 = 
0 = 0 
t(a2, y1) = r(a2,f'(y1)) = s(f(a2),y1) = t(a2, y1) = r(a2, x1) = s(b1,y1) => 0 = 
0 = 0 
t(a2, y2) = r(a2,f'(y2)) = s(f(a2), y2) => t(a2, y2) = r(a2, x2) = s(b1, y2) => 1 
= 1 = 1 
 
f is recovered from (A,t,Y) as the unique f:A->B such that 
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for each a in A, f(a) = b_a where b is an element of B satisfying s(b_a,y) = t(a,y) 
for all y in Y; said b exists because (A,t,Y) was obtained from f that way, and is 
unique by separability of B.  f' is recovered dually. 
 
The "only if" follows because 

if A is not extensional there are at least two possible choices for f', 
while if B is not separable there are at least two possible choices for f. 
 

One could imagine many other ways of representing a Chu transform as a Chu 
space; the reason for the "standardly" is to restrict to this particular 
representation.  Without some sort of limitation on the representation the "only 
if" would not hold.   
 
See [Pratt05a], [Prat05b], [Pratt99]. 
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Appendix III – Power Types 
Consider the Dog example from Jim Odell. It goes like this. You define a class for 
Dog. Then you define subclasses of Dog for Collie, Beagle and Spaniel. Fido is an 
instance of Beagle. Lassie is an instance of Collie. So far so good, all directly 
representable in a decidable description logic like OWL. 
 
Now we introduce another class called Breed. The problem is that this forces 
Collie to serve in two roles, as both class and as instance. As before Collie is a 
class with Lassie as an instance; but Collie must also serve in the role of instance 
- Collie is an instance of Breed. Either this concept is the same thing that is 
simultaneously both class and instance, or there are two things, one a class, one 
an instance, both map to the term "Collie" and an unknown relationship holds 
between the two. The former approach is incompatible with a description logic; 
the latter presents a currently unknown and undetermined relationship. 
 
Ian Horrocks and his student Jeff Pan handled collisions between such twin roles 
(class and instance) in the context of meta modeling by stratifying these roles 
over distinct meta-levels, i.e., the Dog class plays the role of instance to the 
language construct Class (at M2) while it plays the role of class to instances like 
Fido (at M0). 
 
In this case – with Collie and Breed – we do not have this luxury; Breed is clearly 
at the level of domain ontology, the same level as Collie; yet Breed acts as 
something much more like a language Class construct despite its being domain-
specific. And it's not alone; just consider Kingdom, Phylum, Class, Order, Family, 
Genus, Species, Race and Haplotype. There may be many constructs that are 
domain-specific yet have the force (and taxonomic structuring power) of 
language constructs that we routinely relegate to the domain-independent 
language layer but are part of an individual's or community's ontology. 
 
The notion of power type was first introduced by Luca Cardelli in the 1980's 
[Cardelli87]. Cardelli compares a subtype with subsets and a power types with 
power set (the set of all subsets of a given set). So in terms of our example, if 
the given type Dog is designated by the set of all dogs, and its subtypes are 
given by each subset of the set of dogs (e.g., the set of Beagles, the set of 
Spaniels, etc.) then the set of all subsets of dogs is the power set of dogs and 
the power type of dogs is the set whose members are these subsets. Hence 
Beagle, Collie, Spaniel, etc. are members of the power type of Dog; we call this 
Breed. 
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Appendix IV – Managed Logic 

Concrete example of Managed Logic (MAGIC) 
Erick Von Schweber 
12-02-2004 
 
Note to the reader: This Managed Logic appendix is a very slight 
revision of the 12-02-2004 version; a change was made to the 
introduction to promote clarity. 01-18-2006 
 
Managed Logic was our first roadmap towards automated semantic 
interoperability and living languages.  
 
Much of what we described on the road to Managed Logic is achieved 
in Stage 1 of this current Roadmap for Semantics in Netcentric 
Enterprise Architecture and demonstrated in its worked example above. 
We include this paper here as an appendix for the reader's convenience. 
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Introduction 
The objective of Managed Logic, MAGIC for short, is to serve as a facility for the 
definition and evolution of systems of synthetic languages and their artifacts. Key 
to the MAGIC facility is the capability to automatically derive transformations 
between language systems from the definitions of such systems within the 
facility. MAGIC has potentially very broad applicability, across logics, modeling 
languages, ontology languages, programming languages, message formats, data 
models, etc.; such generality and horizontal applicability can make it difficult for 
the newcomer to understand. To promote understanding of the approach taken 
by MAGIC it was deemed desirable to work a concrete example in a commonly 
understood domain, e.g., accounting. Below we introduce the problem and the 
problem setup, including that which is given and that which we aim to achieve. 
 
The challenge of the example to be worked, generally stated, is to transform a 
relational representation into a semantically equivalent XML representation and 
accomplish this with as little human involvement as is practicable. More 
specifically, we are given a relational tuple of data for a line item of a transaction. 
Also given is a reference to the relation schema that the tuple conforms to. Each 
relational attribute of the referenced schema itself refers to a relational domain 
that is grounded in a formal semantic, e.g., a source ontology. The challenge is 
to transform the provided relational tuple into XML structured data for a line item, 
where the XML data will conform to a given XML Schema (provided by a 
reference) where the elements, attributes, namespaces and values of the XML 
Schema are grounded in a given formal semantic, e.g., a target ontology. 
 
The problem in outline form: 

Given: 
Source 

A relational tuple 
A relation schema that the tuple conforms to 
A relational domain grounded in a formal semantic for each 
relational attribute in the relation schema 

Target 
An XML Schema 
A formal semantic grounding for each element, attribute, 
namespace and value of the XML Schema. 

Derive: 
A transformation of the source tuple into XML structured data that 
conforms to 
the target XML Schema and conserves the source semantics. 

 
The approach we describe here begins with the relational tuple and recurses 
through the sub-problems that must be solved to address the challenge. We 
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hope to show, by the time we have recursed to the most foundational sub-
problem(s), how the overall challenge may be successfully addressed. 
 
Before we launch into the details we preview the process in outline form. 

1) Discover pre-existing concrete transformation code and enact it. 
2) In the absence of pre-existing code, discover a pre-existing transformation 

model: interpret the model or compile the model to code and enact it as 
in step (1). Persist generated executables for future reuse. 

3) In the absence of a pre-existing transformation model, discover a pre-
existing language mapping and ontology alignment mapping, reason the 
way to a transformation model from these mappings. Continue with the 
remainder of step (2). 

4) In the absence of a language mapping or an ontology alignment mapping, 
discover the formal, compositional definitions of the source and target 
languages and ontologies and derive the language and/or ontology 
alignment mapping(s) from the definitions. Continue with remainder of 
step (3). 

5) In the absence of formal language or ontology definitions create these as 
needed. Continue with remainder of step (4). 

 

Concrete transformation code 
As the relation schema that our tuple conforms to is known by a unique identifier 
within the overall system, and since the same is true for the target XML Schema, 
we may use a search and discovery process to determine if a concrete 
transformation between these two artifacts is already present somewhere in the 
system, available either locally or remotely. By concrete transformation we mean 
executable or interpretable transformation code. A search or discovery process 
may be a local query, a remote query (client/server) or a peer-to-peer discovery 
mechanism (e.g., JXTA, Groove, Kazaa, Grokster, etc.). Should such 
transformation code be found then all that must be done is to retrieve and enact 
it locally or alternatively, enact it as a remote service. 
 
In the event we do not discover a pre-existing solution we take the next step: we 
look to discover, through a discovery process of the kind just described, an 
existing transformation model – a mapping - between the source and target 
schemas. We will now describe and illustrate an example mapping. 
 

Transformation Models 
Note to the reader: This section presumes an understanding of the metamodel 
hierarchy, from instance data through models, metamodels and MOF, the Meta 
Object Facility serving as the meta metamodel, plus the interrelationships between 
these. An introduction to these concepts is provided in Appendices 1 & 2. 
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We begin, in effect, by jumping to the end of this section’s story, illustrating 
what we mean by a transformation model, i.e., a mapping between models 
expressed as a model that conforms to a transformation metamodel. We will 
make a few remarks and then develop and explain such mappings from 
metamodeling first principles. 
 
In Figure 1 Abstract Syntax Tree for a Transformation Map we instantiate the 
Common Warehouse Metamodel (CWM) Transformation metamodel in order to 
map a relational purchase order line item as source to an XML purchase line item 
as target. 
 

 
Figure 1 Abstract Syntax Tree for a Transformation Map 

This transformation, while articulated at two levels (the metamodel and model 
levels) has consequence on three layers. At the metamodel layer it defines that 
the Classifier “relational table” (i.e., relational entity type), will be transformed to 
become the Classifier “XML elementType” and that the Feature “relational 
column” will be transformed to become the Feature “XML attribute”. 
 
At the model layer it defines that the relational table “POItem” will be 
transformed to become the XML element type “POLineItem” and that the 
relational columns “pricePerUnit” and “quantity” will be transformed according to 
an expression to become a single XML attribute, “extendedPrice”. 
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Finally, at the instance layer, it has the consequence that, for each row of 
relation POItem, the values of pricePerUnit and quantity must be multiplied to 
produce the value of the XML attribute extendedPrice of the XML element that 
represents the transformed instance. 
We note in passing that the label “procedureExpression” of Figure 1 is somewhat 
misleading: it need not be a procedural expression; it may also be declarative. 
 
When we referred in the last section to “discovering a mapping” this is the kind 
of thing we meant to discover. A mapping, as we are using the term here, is a 
model, and models are not just pictures. The graphical view of a model is just 
that, a specific type of view. A key aspect of modeling is the ability to view and 
interact with models in many ways – as graphics, as structured documents, 
through an API, even as binary – all of them equivalent semantically. This applies 
to mapping models as well as to other kinds of models. Thus, we may discover a 
mapping persisted as a document stored in a repository. Alternatively, we may 
interface programmatically with a MOF repository using an API such as Java 
Metadata Interface (JMI) to access and navigate a mapping that is managed by 
the repository. 
 
With some appreciation of what a mapping model is we may now return to 
basics and explain where mappings come from and how they work. 
 
We begin by considering a family of metamodels called Common Warehouse 
Metamodel, or CWM1 for short. It probably should have been called Common 
Warehouse Metamodels, noting the plural, for that is what it offers.2 
 
CWM consists of a family of metamodels defined by meta-metamodel constructs 
that are, for the present purposes, practically equivalent to those of MOF. The 
purpose of CWM is to enable information flow across a range of logical and 
physical data models. The family includes metamodels for relational, 
multidimensional star-schema, record-structured, XML, hierarchical, and other 
data models. What is unique, and what makes this a family and not just a 
collection, is that all of the CWM metamodels conform to a common meta-
metamodel, essentially MOF. 
 

                                        
1 Common Warehouse Metamodel is a standard of the Object Management Group. 
2 For a more complete discussion of these concepts see David Frankel’s book, Model Driven Architecture. 
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Figure 2 MOF Subclassing 

In Figure 2 MOF Subclassing we show how a very simple, tabular data structure 
can be defined as a MOF conformant metamodel, including a constraint that a 
table owns its column set. 
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Now let’s take a look at the CWM metamodels for relational and XML, the subject 
of our running example. 
 
Figure 3 CWM Relational DB Metamodel illustrates how meta-metamodel 
constructs from MOF, namely Classifier and Feature, are instantiated at the 
metamodel layer (remember, MOF and its constructs are at the meta-metamodel 
layer) as CWM Common metamodel constructs and then specialized so as to 
define relational constructs, such as table and column. 
 

 
Figure 3 CWM Relational DB Metamodel 
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We can impose further constraints in the metamodel, as is shown in Figure 4, 
depicting a fragment of the CWM relational data metamodel.  
 

 
Figure 4 Fragment of CWM Relational Data Metamodel 
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We can also illustrate a sample relational schema that conforms to the CWM 
relational metamodel, as in Figure 5. Here we depict the schema as an instance 
of the metamodel. 
 

 
Figure 5 Specific Relational Data Model Instance 
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Next we examine how meta-metamodel constructs, again Classifier and Feature, 
are instantiated by CWM at the metamodel layer and specialized to define XML 
constructs, namely element type and attribute, as is shown in Figure 6. 
 

 
Figure 6 CWM XML Metamodel 

Notice how both the relational and XML metamodels are defined in CWM by the 
same constructs, ultimately instances of MOF Classifier and Feature. 
 
While most of the data models that are now supported by CWM (as metamodels) 
were developed independently of the others, because their CWM metamodels 
conform to a common meta-metamodel they may be interrelated, specifically 
mapped to one another. This is a key concept and we examine it in the next 
section. 
 

Mapping source to target metamodels 
A transformation model requires both a metamodel mapping and a model 
mapping that is constrained by the metamodel mapping. The groundwork for a 
metamodel mapping has now been laid, as illustrated in Figure 7 Common Core 
for UML, CWM, and MOF. 
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Figure 7 Common Core for UML, CWM, and MOF 

Elements of metamodels representing distinct systems may be defined using 
common and relatable constructs. For example, the notion of a relational column 
and an XML attribute are structurally quite distinct and governed by different 
constraints, yet we have defined them using an identical metamodel construct, 
Feature. 
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We now look at the means to map common metamodels to one another. Figure 
8 illustrates a fragment of the CWM Transformation metamodel that enables this. 
 

 
Figure 8 Fragment of the CWM Transformation Metamodel 

 
Note how the transformation metamodel enables Classifiers to be mapped to 
Classifiers; Features to be mapped to Features; and Classifiers to be mapped to 
Features. This becomes clearer if we make things more concrete by returning to 
the specific mapping of a relational purchase order item to an XML purchase 
order line item. 
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In Figure 9 Abstract Syntax Tree for a Transformation Map, we instantiate the 
CWM Transformation metamodel in order to map a relational purchase order line 
item as source to an XML purchase line item as target.  
 

 
Figure 9 Abstract Syntax Tree for a Transformation Map 

The mapping explicitly defines not only what relational metamodel constructs are 
mapped to which XML metamodel constructs (e.g., relational table to XML 
element type) but also which specific entities of the source schema are mapped 
to specific entities of the target (e.g., POItem maps to POLineItem). Both 
structure and semantics are mapped by this one mapping model. It may be 
noted in passing that the function responsible for the mapping may be used to 
translate between systems of units or value or such may be formalized as part of 
the mapping itself (the details are beyond the scope of this paper). 
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CWM, and a metamodeling approach to transformation in general, is not limited 
to relational and XML however. Figure 10 provides just a sampling of the many 
source/target transformation pairs that CWM facilitates via metamodels and 
mappings. 
 

 
Figure 10 CWM Transformation Sources and Targets 

The transformation possibilities offered by CWM are extensive, and cover most 
needs of the data warehousing community, to the extent that the major vendors 
in the space, IBM and Oracle, have embraced CWM and offer implementations of 
the standard. CWM however, provides a specific collection of metamodels out-of-
the-box, and this collection does not provide for all possible transformation 
needs, which is more extensive than moving instance data between Online 
Transaction Processing Systems and data warehouses. 
 
Since late 2002/early 2003 the OMG has been working on generalizing CWM to 
support all types and varieties of MOF-based transformations This idea, of CWM-
like transformations built directly around MOF 2.0, is supported by a current 
standardization effort at the OMG that is already well along, defining MOF-based 
transformations as part of the MOF 2.0 QVT specification 
(Query/View/Transformation). QVT will support all of the mappings we’ve shown 
here plus much more. 
 
Should our discovery process find a pre-existing mapping we can use Model 
Driven Architecture (MDA) code generation technology to generate executable 
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transformation code. Alternatively, we may use a model interpreter to interpret 
the transformation mapping model at runtime to produce the target XML 
representation. Generated transformation code may be persisted as an artifact 
with an association created between the source and target schemas and the 
newly generated transformation code, creating an asset that may be discovered 
and reused in the future.3 
 

Deriving transformation mappings 
In the event we do not discover a pre-existing transformation mapping model we 
set out to derive one from things more foundational. Things more foundational 
include a transformation model that maps the source language, i.e., the 
relational model of data, to the target language model, i.e., XML Schema 
conformant XML. We call this a language mapping.  
 

Language Mappings 
A valid language mapping was implicit to the relational to XML line item mapping 
we just explored in Figure 9. We now make the language map, at the moment a 
very simplistic one, explicit. 
 
Figure 11 and Figure 12 illustrate two equally valid ways of mapping the 
structure of relational data into the structure of XML data. In the first we map 
relational table to XML Element type (the same mapping that was implicit in 
Figure 9). In the second we show a distinct – but equally valid – mapping, where 
a relational attribute is mapped to an XML Element type, but in this case an 
element that is the child of the XML Element that represents the relational table. 
 

                                        
3 In other reports  we have referred to the functionality discussed thus far as MRT – Model-driven 
Representation and Transformation. 
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Figure 11 Abstract syntax for a language map (1) 

 
Figure 12 Abstract syntax tree for a language map (2) 

 
This diversity of mappings is a consequence of the many ways in which 
languages, XML in this case, may be employed in a representational task. After 
all, it is the developer’s choice whether to represent a data item as an attribute 
of an XML element or as a child element. The multiple possible mappings support 
the many ways in which a language may be validly employed. We refer to this 
expressive range, and the choice of a style that selects one from the many, as 
representational idiom. Melnik and Decker, writing in a paper on the semantic 
web, illustrated six distinct means of using Resource Description Framework 
(RDF) to represent the statement that “Mozart was the principle composer of the 
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Requiem but with assistance from Salieri” (ignoring for our purposes that this 
belief is a myth not supported by historical fact). 
 
While metamodel based techniques can express the many transformations 
between languages they do not in and of themselves dictate “the right one” to 
be used in each specific situation. However, where a representation model, 
source or target, unambiguously designates the representational idiom at work, 
then it is possible to automatically select a corresponding transformation 
mapping. 
 
In the B2B example both source and target schemas could reference the 
representational idiom(s) at work (e.g., employing an idiom on the target side 
that uses XML attributes rather than child elements), eliminating the ambiguity in 
selecting a language mapping. 
 
Put simply it comes down to this: a language is not completely specified unless 
and until it is coupled with an idiom (moreover it can be argued that even with a 
designated idiom a language specification is incomplete, requiring the further 
designation of an ontology). When source and target languages are identified, 
complete with source and target idioms, then a language transformation may be 
selected (or derived/constructed in its absence). 
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Ontology Alignment Mappings 
A language mapping model is not the only thing more foundational that we 
require for our derivation of a transformation mapping model from things more 
foundational. Besides the identification of idioms involved in a language mapping 
we also need a designation of how meaning embodied in the source 
representation should be mapped to meaning as it is embodied in the target 
representation. At minimum this requires a transformation that maps the formal 
semantics of the source schema and data into the formal semantics of the target 
schema and data. 
 
The semantics that govern the relational line item source in the B2B example is 
provided by a community-wide semantic called Open Buying on Internet (OBI) 
while the Universal Business Language (UBL) provides the semantics of the 
target. These two standards represent the agreed upon semantics of their 
community respective communities, though neither of these is a full-fledged 
ontology (UBL is heading in that direction). 
 
For the purpose of our example we can treat both OBI and UBL as ontologies. 
For reasons of manageability, interoperability and productivity, we choose to 
author, view, manage and manipulate ontologies as models. Specifically, 
ontologies may be represented as models that conform to a MOF-based Ontology 
Definition Metamodel (ODM). The transformation model we need to transform 
from the source ontology to the target ontology is therefore an ontology 
alignment mapping. 
 
We now take a brief look at the ODM. Note that the ODM is a work in progress 
at the OMG, slated for adoption in late 2004 or early 2005. The snapshot we’ll be 
reviewing is from late 2003, with several revisions having been made since that 
time. After we present the snapshot we’ll highlight the major changes. 
 
ODM is a MOF conformant metamodel intended to support models with the 
expressive power of RDF(S), DAML+OIL, OWL (all levels), KIF, Conceptual 
Graphs, and Common Logic. In other words, the metamodel supports the 
concepts, structures and constraints of these languages with no loss of fidelity. 
See Figure 13 Layered Ontology Definition Metamodel (ODM) Approach. 
 
ODM will include standardized mappings to several knowledge representation 
languages, e.g., IBM research, a member of the Ontology Definition Metamodel 
submission team, is developing RDF(S) and OWL mappings to ODM’s core. 
Sandpiper Software is a key player in the effort; also supporting the effort are 
AT&T/Gentleware and DSTC. 
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Models that conform to ODM may be authored in IBM Rational Rose® 
supplemented with a plug-in that supports the associated UML profile, such as is 
provided by Sandpiper’s Medius® Visual Ontology Modeler (VOM). 
Representations in the supported languages may then be imported and exported 
based on the standardized mappings. Models that conform to ODM may exploit 
XMI for tool and repository interchange and MOF repositories for management. 
 

 
Figure 13 Layered Ontology Definition Metamodel (ODM) Approach 

The core metamodel will be an abstracted representation that leverages 
interoperability notions derived from frame-based systems such as OKBC (Open 
Knowledge Base Connectivity), though it will not depend on OKBC, or frames, in 
fact.  It will be supported by a model-theoretic semantics. 
 
A central notion in the development of the core metamodel is that "everything is 
a relation”.  Classes and individuals are unary relations, slots and RDF properties 
are binary relations, facets are ternary relations, etc. 
 
The core of ODM, supported by the Sandpiper plug-in to IBM Rational Rose, has 
been in use for some time as part of HORUS, a DARPA program utilizing 
ontologies for intelligence community needs. 
 

“The focus of Horus is to enable and exploit semantic-based markup of 
sources to promote information discovery and integration, ultimately by 
software agents as well as humans. Users and agents will access, 
manipulate, and create knowledge that is organized as Horus “knowledge 
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objects“. These (conceptual) objects represent real-world entities such as 
military units, terrorist organizations, and geopolitical events. Information 
in knowledge objects is linked to its source (i.e., a database or web page). 
This supports the maintenance of information pedigrees and drilldown to 
the original sources. User sites will build portals to provide access to these 
objects, resident in a Horus Knowledge Base (KB).”4 

 
Regarding tools used in the Horus project, ISX states: 
 

“Authoring tools enable a (trained) user to define classes and properties 
and specify their interrelationships via graphical user interfaces. These 
tools output ontologies in an OBML [OBML refers to Ontology Based 
Markup Language, e.g., DAML. Note added for clarity – not part of cited 
source.]. Commercial companies, the RDF community, and the DAML 
project have built a number of tools for authoring and validating 
ontologies (and schemas). We have used COTS tools such as XML Spy™ 
(www.xmlspy.com) and Sandpiper’s Visual Ontology Modeler 
(www.sandsoft.com).” 5 

 
An overview of ODM, seen in Sandpiper Software’s Medius Visual Ontology 
Modeler (VOM) is shown in Figure 14. A wider view of the same ODM overview is 
depicted in Figure 15. 
 

                                        
4 Brian Kettler, ISX Corporation 
5 http://semanticobjectweb.isx.com/isx-sow-wp-2002-03.pdf 
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Figure 14 Ontology Definition Metamodel in Visual Ontology Modeler 
(VOM) 
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Figure 15 Ontology Definition Metamodel (ODM) Overview 

 
Some important features of the ODM: 

• All ODM Core elements are relations (see Figure 16 Ontology Definition 
Metamodel (ODM) Core (initial)) 

o Preserves semantics of individuals and classes as unary relations. 
o Relation is a MOF Classifier with multiple inheritance support, thus 

all core elements including individuals and facets can support 
inheritance; constraints on inheritance are KR language specific 
and therefore provided in metamodels layered on ODM Core. 

o ODM Core supports n-ary relations; relations do not require 
defined endpoints (critical in some knowledge representation 
languages) 

o Supports incomplete definitions and partial knowledge, including 
incomplete specification of individuals (common in KR) 

• Use of packages to emulate frames  
o Provides a consistent mechanism for keeping details together 

(slots, facets, axioms, diagrams, deployment details). 
• Ontologies and frames are managed as separate components  

o Facilitates collaborative, component-based development, reuse, 
configuration management, ontology restructuring and 
maintenance. 
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The Sandpiper specific implementation of the ODM, in its Medius Visual Ontology 
Modeler (VOM), supports these by emulating key features of some frame 
systems in addition to supporting XML-based description logics languages. 
 

 
Figure 16 Ontology Definition Metamodel (ODM) Core (initial) 

 
The ODM has seen two major changes since the snapshot seen in Figure 16. The 
ODM as presented here borders on being an ontology definition meta-
metamodel – a model for defining ontology definition metamodels. Such would 
require a major rework of MOF itself. This motivated the first change, to 
reconceive ODM as a collection of metamodels to suit the range of ontology 
languages and representations in them, in the same spirit as CWM but for 
ontology languages rather than data languages. Second, Common Logic (CL) 
was itself evolving into Simplified Common Logic (SCL), and ODM was revised to 
reflect this change. Overall, the revised ODM presents two packages, one for SCL 
and ontology languages that may be represented by it (e.g., KIF, FOL, 
Conceptual Graphs), and one for OWL, with the two packages extending a 
common core. 
 
Let’s return to our B2B example and apply the ODM. In this example we ground 
each model, source and target, in a semantics that is standardized across each 
one’s respective community. RosettaNet’s Open Buying on Internet (OBI), 
though not a formal ontology, does provide an abstract model and semantics for 
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ecommerce that is shared across its community. OASIS’s Universal Business 
Language (UBL) has gained even wider acceptance as a community-wide shared 
semantics and, while not currently articulated in an ontology or knowledge 
representation language, is moving in this direction, supported by ongoing 
collaboration between OASIS and the W3C’s web ontology effort. Applying OBI 
and UBL in this example conveys the essential concepts while keeping the 
example clear and simple; use of large formal ontologies in this example, such as 
Cyc, would have added needless complexity and drawn attention away from the 
key points. 
 
To achieve the grounding we first express OBI and UBL in terms of the Ontology 
Definition Metamodel (ODM). Next, each element of the source model becomes a 
subclass of an OBI element. Similarly, each element of the target model is 
subclassed to a UBL element. This is shown in Figure 17 and Figure 18. 
 

 
Figure 17 Semantically Grounding the Source Model 
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Figure 18 Semantically Grounding the Target Model 

Since we have expressed both source and target semantics as models 
conforming to ODM we may now apply a CWM-like transformation mapping 
model to align these semantics: we may define a transformation map between 
the ODM conformant models that represent the semantics of OBI and UBL. This 
is depicted in Figure 19. 
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Figure 19 Aligning Source and Target Ontologies 

Returning to our example, our current aim is to derive a source to target schema 
transformation model (a mapping model, as depicted earlier in Figure 9) from 
the combination of a language mapping and an ontology alignment mapping 
along with the source and target schemas. In keeping with our strategy we first 
seek to discover a pre-existing language mapping and ontology alignment 
mapping. 
 
If we discover both of these mappings an automated reasoning method can 
determine that POItem is semantically equivalent to POLineItem and create a 
map between them.  While the source has no semantic equivalent to the target’s 
extendedPrice the reasoning method can construct a source expression that is 
semantically equivalent, the product of the source’s pricePerUnit times quantity, 
and can then map this expression to the target’s extendedPrice. A reasoning 
method can thereby automatically produce a transformation model between the 
source relational schema and the target XML Schema. 
 
The symbolic reasoning techniques we consider to enable automated 
identification and/or construction of semantic equivalencies include entailment, 
deduction, induction, abduction and graph planning. We look to the efforts of 
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those working on Semantic Web Services (SWS) for techniques and experimental 
results to guide our efforts in accomplishing this derivation (SWS has been 
focused on automated composition of semantically described web services using 
entailment and automated graph planning). 
 
We emphasize that we can use a CWM-like (or MOF QVT) approach to define a 
mapping between differing semantics. Because of the expressivity of ODM we 
can create ODM conformant models of the well-known ontologies, such as Cyc, 
SUO, SUMO and John Sowa’s upper ontology; we chose not to here in order to 
keep the example and illustrations simple. However, this can be done, and that’s 
the point: that we can apply MDA methodology and commercial MDA tooling to 
ontologies and knowledge representations; that we can use MDA machinery to 
align ontologies, author ontologies, revise ontologies, manage ontologies, 
interrogate ontologies, serialize/deserialize ontologies as XML and thereby 
distribute ontologies, and even generate code from ontologies! And as this 
simple example illustrates, enabled by MDA methodology and machinery, 
ontologies may be brought to bear directly within information management and 
software development environments, methodologies and processes. This is a key 
leverage point. 
 
It should further be noted that by conducting alignment at the more abstract 
ontology level, rather than the more concrete model level, several important 
benefits accrue. 

• Greater productivity is achieved as there are far fewer ontologies to be 
aligned than the models that are grounded in these ontologies, and that 
the derivation of a transformation map between models grounded in 
aligned ontologies may be automated. 

• Greater consistency is achieved as each ontology alignment cascades to 
the numerous models that are grounded in such aligned ontologies. 

• Greater correctness is achieved as ontologies generally provide richer 
and more formal semantics on which to base alignment decisions. 

 
Having derived a schema mapping from the more foundational language 
mappings and ontology mappings we persist it for reuse, associate it with source 
and target schemas and exit this level of recursion – we may generate code from 
the mapping or interpret it (as was described earlier). 
 
It is entirely possible that automatic derivation may fail in one of two ways. It 
may not be able to derive a single schema mapping, but only constrain the 
solution to one of several. Alternatively, it may derive an incorrect mapping. In 
the former case, additional contextual knowledge must be brought to bear, such 
as the objective(s) of the transformation between source and target and the 
situation the transformation and target representation are a part of (or expected 
to be a part of). Case Base Reasoning (CBR) may be a useful tool with which to 
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select the schema mapping that is the best match to the situation. Then too, 
humans may be consulted, to provide hints, disambiguate or to guide/train the 
Case Base Reasoner in the preferred trade-offs to make and the balance to be 
achieved. 
 
The other possible outcome is a transformation failure. Observing a failure 
presumes a means to monitor usage of the transformed representation, either by 
humans, applications or both, and determine deviation from expected or desired 
behavior/performance. When such a discrepancy can be identified then Model 
Based Diagnosis may be employed to identify the root cause(s) and attempt a 
repair to the schema mapping. Again, humans may be consulted to aid or 
accomplish the diagnosis and/or repair. Model Based Diagnosis equipped with a 
supervised learning mode could profit from such human intervention.6 
 
What is to be done if we do not discover pre-existing language and ontology 
alignment mappings? This is addressed in the next section. 
 

Deriving language and ontology alignment mappings from 
formal compositional definitions of languages, logics and 
ontologies 
Recursing a level deeper still we now come to the most significant and 
foundational sub-problems yet encountered here. In the absence of discovering 
pre-existing source to target language and ontology alignment mappings we aim 
to derive one or both of these, as required, from things still more foundational. 
To enable this we now explore a compositional account of languages, logics and 
ontologies, whereby such artifacts may be formally defined in terms of 
compositions of fundamental components of language, logic and ontology. 
Language and ontology alignment mappings are then to be formally derived from 
the compositional definitions of source and target languages and ontologies. 
 
At this point in our discussion we abandon our B2B example and instead point to 
three separate but related efforts to provide the required mathematical 
machinery as well as a basis of confidence that the goals of this section can 
indeed be achieved. The reason we abandon the example is simple: we have not 
yet worked out the B2B example directly with the approaches we are about to 
discuss. We have considered, however, how the methods and techniques of the 
three approaches could be applied to the challenge at hand. This consideration is, 
for the time being, abstract. 
 
To achieve the objectives of this section we require a number of capabilities. 

                                        
6 The functionality discussed, inferring model mappings from language and ontology alignment mappings, 
has been previously referred to as SMRT – Semantic Model-driven Representation and Transformation. 
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a) Formalize a metamodeling facility (e.g., MOF), including the meta-
metamodel, the metamodels that conform to the meta-metamodel, the 
models/ontologies that are instances of the metamodels, the instances 
(i.e., system state or data) that are instances of the models/ontologies 
and the numerous relationships between these entities. The formalization 
must support verification and validity checking. 

b) Means of formalization that is commonly applicable across the gamut of 
logics, formal languages and ontologies of all kinds despite vast 
differences in syntax and semantics. 

c) Transform expressions in one language into another while conserving 
meaning (and the knowledge to know when this is/is not possible. 

d) Define by composition a new language from existing languages or a new 
theory from existing theories. 

e) Normalization of languages and ontologies into compositions of language 
and ontology components and the interrelations between them. 

 
The three approaches we will now consider are: 

• Category-theoretic formalization of a metamodeling facility (CMF - 
Core Metamodeling Facility) 

• Institutions, Institution Morphisms, Charters and Parchments (Inst) 
• Information Flow Framework (IFF) 

 

Core Metamodeling Facility 

CMF is a research effort spanning a decade, led by Ken Baclawski of 
Northeastern University with primary contributions by Jeff Smith, Mitch Kokar 
and others. See “Metamodeling Facilities, Work in progress for UML 2.0 Math 
Framework and MOF 2.0 Transformation Proposal for OMG” Kenneth Baclawski, 
Mieczyslaw Kokar and Jeff Smith Sept. 2003. The aim of CMF has been to 
formalize the MOF using mathematical category theory with proofs conducted in 
the formal language Slang in the Specware product. The strategy Baclawski et al 
have employed is to define a small core facility for metamodeling, formalize the 
core and then define MOF in terms of the core (a bootstrapping strategy).  
 
The approach defines each layer of the metamodeling facility – meta-metamodel, 
metamodel, model and instance – by specifying a literal type structure(s), 
partially ordered sets, and order preserving functions. For example, the 
isAbstract quality of a metamodel element is represented as a property function 
with domain GeneralizableElement and range Boolean. Proofs are accomplished 
by category theoretic commutative diagrams and partially ordered commutative 
diagrams. In this fashion it is shown that CMF is both self-describing and 
supports the layers and interrelationships required of a metamodeling facility. 
The conditions that formally characterize the MOF in terms CMF are then 
provided as axioms; these are the MOF axioms.  
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This work demonstrates that a four-level metamodeling hierarchy such as MOF 
may be formalized using category theory with the formalization supporting 
verification and validity checking by means of category theoretic proofs. This 
work therefore supports our capability (a). 
 

Institutions 
We quote from Institutions: Abstract model theory for Specification and 
programming, Joseph Goguen and Rod Burstall, in Journal of the ACM, 39, No. 1, 
Jan. 1992, pages 95-146. 
 

We introduce the concept of institution to formalize the informal 
notion of “logical system.” The major requirement is that there is a 
satisfaction relation between models and sentences which is 
consistent under change of notation. Institutions enable us to 
abstract from syntactic and semantic detail when working on 
language structure “in-the-large”; for example, we can define 
language features for building large structures from smaller ones 
[using category theoretic colimits], possibly involving parameters, 
without commitment to any particular logical system. This applies 
to both specification languages and programming 
languages...[Results of this work include that] any institution such 
that signatures (which define notation) can be glued together, also 
allows gluing together theories (which are just collections of 
sentences over a fixed signature)... gives conditions under which it 
is sound to use a theorem prover for one institution on [translated] 
theories from another... how to define institutions that allow 
sentences and constraints from two or more institutions. All our 
general results apply to such “duplex” or “multiplex” institutions. 

 ... 
In particular, if we are correct that the essential purpose of a 
specification language is to say how to put (hopefully small and 
well-understood) theories together to make new (and possibly very 
large) specifications, then much of the syntax and semantics of 
specifications does not depend upon the logical system in which the 
theories are expressed... 

 
Informally, an institution consists of:  
• a collection of signatures (which are vocabularies for use in 

constructing sentences in a logical system) and signature 
morphisms, together with for each signature Σ , 

o a collection of Σ-sentences,  
o a collection of Σ-models, and 
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o a Σ-satisfaction relation, of Σ-sentences by Σ-models, 
such that when you change signatures (by a signature morphism), 
satisfaction of sentences by models changes consistently. 

 
One of the results of this paper mentioned above is particularly worth expanding 
on for the present purposes. 
 

Finally, “multiplex” institutions permit whatever combination of 
sentences and constrains one might desire, provided they are 
related by morphisms to the same base institution... Signature 
morphisms play a basic role in structuring specifications. Let us 
assume for concreteness of exposition that the signatures have 
sorts and operators, and then consider some specific structuring 
mechanisms. First, we may build a more complex specification by 
adding new sorts and operators to an existing signature; then the 
inclusion of the original signature into the extend signature is an 
“enrichment” signature morphism. Second, we may wish to use 
such an enrichment not just on one specification, but on a whole 
class of specifications. This leads to parameterized specifications. 
For instantiation, the parameter sorts and operators and operators 
are bound to particular sorts and operators by a “binding” signature 
morphism. Third, a large specification may have name clashes: two 
subspecifications may happen to use the same sort or operator 
names. These can be eliminated by signature morphisms that 
define renamings. Enrichment, binding and renaming raise no deep 
logical problems, but are still important for modular structure. 
Using institutions, we can define such features without making a 
commitment to any particular logical system. Moreover, the task of 
giving a semantics for the language is also simplified. We feel that 
these considerations justify an attempt to deal with logical systems 
in a general way, free of the entanglements of any particular 
syntax and semantics. 

 
Over its twenty-plus year existence multiple researchers have applied the theory 
of institutions to represent numerous logics and formal languages. Nearly every 
logic one can think of has been shown to be an institution.  The appendix in the 
just cited paper provides proofs for many sorted equational logic (equations as 
sentences, algebras as models); first order logic (with the usual first order 
sentences and structures); many sorted first order logic; first order logic with 
equality; many sorted first order logic with equality; Horn clause logic; Horn 
clause with equality; many sorted Horn clause logic with equality; and others.  
Page 141 of the above paper lists further logics for which it seems clear the 
same proof methods will work, including higher order logic, standard modal 
logics (with Kripke structures as models) and infinitary logics; proofs for these 
and many others appear in the literature. The historical emphasis has been on 
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logics that are useful for specification.  But the logics for KIF and (pure) Prolog 
are among those used for ontologies that have been proved institutional, leaving 
little doubt that RDF, OWL, etc. are also institutional. 
 
Institutions thus demonstrate that a common formal approach can indeed be 
employed across a very wide range of formal systems. Furthermore, the CMF 
discussed in the last section has also been articulated as an institution. See  “An 
Institutional Framework for Metamodeling” Kenneth Baclawski, Mieczyslaw Kokar 
and Jeff Smith Sept. 2003. For more on morphisms between distinct 
institutions – a means of transforming from one institution to another - see 
Institution Morphisms, Joseph Goguen and Grigore Rosu, in Formal Aspects of 
Computing 13, 2002, pages 274-307. A related approach, applying the 
Information Flow theory of Barwise and Seligman (one of the three cornerstones 
of IFF, see below) is the IF-Map approach, with demonstrated examples 
available at http://www.aktors.org/technologies/ifmap/. Additional examples are 
presented in a paper by Marco Schorlemmer, "Formal support for representing 
and automating semantic interoperability". 
 
Our team, and others, have developed tools that implement parts and aspects of 
the theory of institutions for a variety of purposes. These include CASL and 
CafeOBJ (both based on Goguen’s OBJ) and Maude (previously used on DARPA 
programs to implement complex institution morphisms). 
 
The success of institutions across so many languages provides a measure of 
confidence in support of our capabilities (b), (c) and (d). 
 

Information Flow Framework 

We now look at IFF, an ongoing effort led by Robert Kent at the IEEE by which 
to componentize, rationalize and verify the IEEE Standard Upper Ontology (SUO) 
and specific domain ontologies. See http://suo.ieee.org/IFF/ . IFF employs 
elements of category theory, the Information Flow work of Barwise and Seligman 
and Formal Concept Analysis (FCA) to achieve these aims. 
 
Of particular interest for our purposes is the IFF structure called the Lattice of 
Theories (LoT). The LoT formalizes a notion John Sowa calls “Knowledge Soup”, 
an infinite, evolving structure that enables even conflicting, inconsistent 
knowledge to coexist and be interrelated. 
 
To formalize knowledge soup the LoT employs FCA’s notion of a concept lattice. 
The concept lattices of FCA are essentially Galois lattices formed over what FCA 
calls a formal context: a set of objects, a set of attributes and a relation that 
associates each object in the formal context with the attributes in the formal 
context it possesses. Each node of an FCA concept lattice is called a formal 
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concept and is defined by a set of objects, called an extent, and a set of 
attributes, called an intent, drawn from the formal context such that a Galois 
connection holds between intent and extent so that each attribute of a concept’s 
intent is possessed by all of the objects in its extent; each object in the concept’s 
extent is characterized by all of the attributes in its intent. 
 
The LoT of the IFF is a concept lattice where each formal concept has as an 
extent a class of models and as an intent a closed theory (as a set of expressions 
in a language L) such that the extent is the class of models that satisfy the 
theory and conversely that the intent is the theory that is satisfied by each model 
in the extent. 
 
Importantly, the partial order of the LoT is an ordering of theories: a theory T1 

that is lower down in the LoT than a theory T2 means that T2 is more general 
than T1 (by more general we mean T2 is constituted by a subset of the 
expressions that constitute T1 – the former has fewer constraints than the later 
and hence is more general). Thus the LoT provides a means to interrelate 
theories and by following lattice edges navigate amongst theories, indeed to 
revise theories. In “The IFF Approach to the Lattice of Theories” 
http://suo.ieee.org/IFF/work-in-progress/ Robert Kent employs the LoT to 
formalize John Sowa’s informal notion knowledge soup. 
 
Figure 20 Navigating the Lattice of Theories, is from this citation showing how 
one can revise a theory by appropriate navigation about the LoT. For example, 
by moving upwards from T1 to T2 a contraction has been achieved (contraction 
referring to the reduced set of expressions (axioms) that constitute the more 
general theory). By moving down from T2 to T3 an expansion has been achieved 
(adding expressions to the theory so as to narrow it). Such a contraction 
followed by an expansion constitutes a theory revision. Additionally, by renaming 
the parts of axioms that constitute a theory – relation types, entity types and 
constants - analogous theories can be discovered.  
 

 
Figure 20 Navigating the Lattice of Theories 
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This becomes clearer through an example. We recapitulate (and slightly 
paraphrase) John Sowa’s example from his book “Knowledge Representation 
Logical, Philosophical, and Computational Foundations” p.387. Consider theory 
T1 as Newton’s theory of gravitation applied to the Earth revolving around the 
sun. The contraction from T1 to T2 involves the deletion of axioms for the 
gravitational force. In the expansion from T2 to T3 axioms for the electrical force 
would be added. The net revision of T1 to T3 is to replace the gravitational force 
in what is the Copernican model of the solar system with the electrical force. 
Finally, we jump via analogy to a remote theory in the LoT (the previous 
movements have all been local). For this analogy we systematically rename the 
type, relations and individuals that appear in the axioms: the Earth is renamed 
the electron; the sun is renamed the nucleus; and the solar system is renamed 
the atom. A final revision of this analogy can discard details about the Earth and 
Sun that have become irrelevant and add new axioms for quantum mechanics. 
 
Another facet of the LoT, important to our present endeavor though not 
elaborated on by Kent in the cited paper on IFF, is construction of theories. The 
standard lattice operations of join (supremum – least upper bound) and meet 
(infimum – greatest lower bound) provide the means to form new theories from 
existing theories. (Note: By treating the LoT as a full-fledged mathematical 
category additional options for theory creation become available.) Particularly 
intriguing are the theories in the LoT that are minimal with respect to the axioms 
that constitute them. Such theories may serve as atomic components for 
composing more elaborate theories in the same vein as when Goguen speaks of 
using institutions to “put (hopefully small and well-understood) theories together 
to make new (and possibly very large) specifications”. 
 
In the opening of this subsection on IFF we remarked that the purpose of IFF, 
including its LoT, is to componentize, rationalize, verify and even merge 
ontologies, both the general-purpose SUO as well as far more specific domain 
ontologies. The central tactic here is that the IFF treats ontologies as theories. 
The consequence is that the LoT may be employed to componentize, merge, 
revise and generally navigate ontologies; indeed, to compose ontologies from 
ontology components! And having composed two or more distinct ontologies 
(from a library of ontology components) to know where the composed ontologies 
are situated in the LoT and use the LoT to navigate – in other words, map or 
transform – from one ontology to another without further adieu. 
 
The IFF is focused on solving ontology problems through application of its 
mathematical framework at what we call (in MOF speak) the M1 level, the level 
of models/ontologies. However, we believe that there is great benefit to be had 
by additionally applying IFF at a higher meta level, specifically M2, the level at 
which metamodels are used to represent, manipulate, manage and transform 
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languages. We therefore take this further step and treat metamodels of logics 
and languages as theories. We conceive of an IFF-like LoT where the theories 
represent the metamodels of logics and languages, including metamodel 
components of logic and language. This LoT at the metamodel level provides the 
means to compose metamodels of logics and languages from metamodel 
components of logic and language, and to navigate amongst such composed 
metamodels of logics and languages. Add this to the analogous capability for 
ontologies just discussed and we have the means to capability (e). 
 
 

Where we go from here 

In the remaining section we take a very early look at a notional strategy for 
component-wise normalization and recomposition of languages, logics and 
ontologies along the lines enabled by CMF, Institutions and IFF. For convenience 
of exposition we introduce the term synthetic language systems (SLS) to 
designate non-natural languages, logics and formal systems and their artifacts 
across all metalevels (including meta-metamodel, metamodel, model/ontology 
and instance). 
 
Given the mathematical and computational tools and technologies described 
throughout this paper we now seek to identify the mostly orthogonal concerns by 
which an arbitrary synthetic language system may be factored (i.e., normalized 
to components). We have provisionally defined a (mathematical) concern space 
of seven dimensions to accomplish this. The dimensions are: logic constructors, 
ontology constructors, abstract syntax, representational idiom, axiomatic 
semantics, model theoretic semantics and proof theory. Points and regions of 
this space may be mapped to and from a multitude of concrete and surface 
syntaxes (which may also be considered as an aspect of the syntax dimension of 
concern) in much the same way as MOF manages artifacts at all metalevels in 
terms of an abstract syntax but may externalize to and internalize from specific 
surface syntaxes. 
 
There must additionally be a scheme for defining elementary components along 
each identified dimension of concern and for interrelating the larger-grained, 
composed components, e.g., the elementary logic constructors and the structure 
that interrelates compositions of these up to the complexity of a complete 
language/logic. We have outlined a scheme for defining elementary and 
composed components for each of the seven dimensions of the concern space. 
The schemes draw on the work referenced above to formalize and componentize 
synthetic language systems. 
 
A central problem to the effort is composing transformations between synthetic 
language systems from more foundational mappings, and deriving these from 
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the relations that hold between their constituent components. From a category 
theoretic viewpoint this involves producing morphisms from morphisms. The 
work of team member Joseph Goguen with Ron Burstall on Institution charters 
and parchments looks to be a promising foundation for such, and these 
structures have already been successfully used by Mossakowski and others on 
problems in the semantics of Institutions with tools like CASL. 
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The figure on the previous page (MAGIC – Managed Logic – Technical Approach) 
summarizes our formal framework in support of the recursive process we’ve 
described in this paper to provide largely automated interoperability and 
information flow between synthetic language systems. A thorough walk-through 
of this figure is beyond the scope of the present paper. We do however, direct 
attention to several highlights. Notice the Concern Space, Subspace and Relative 
Metalevels lattices, strongly influenced by IFF’s notion of the Lattice of Theories 
(though flipped top-to-bottom). Observe that the framework operates on all 
metalevels, that these have been made relative, and that the framework is self-
describing. Attend to the use of category theoretic methods by which to compose 
big things from small things, derive mappings between compositionally defined 
entities and articulate proofs. 
 
For the B2B example the relational model of data and XML and XML Schema 
would need to be compositionally defined in the framework as languages and 
OBI and UBL as ontologies would similarly need to be defined. We believe the 
methods discussed in this section may then be used to automatically derive the 
language mapping between relational and XML as well as to derive the ontology 
alignment mapping between OBI and UBL. From these mappings, which would 
be persisted for future reuse, we would reason the way to a transformation 
model as discussed in the previous section and then interpret or compile the 
transformation to produce the target XML representation of the line item. 
 
Despite such advanced mathematical machinery there will doubtless be cases 
that resist full automation and require human intervention. We suspect such 
cases will be far more likely when deriving ontology alignment mappings than 
when deriving language/logic mappings because we expect the definitions of 
languages and logics to have less inherent ambiguity, variability and complexity 
than the definitions of ontologies. In such cases humans must be empowered 
with visual/graphical syntaxes for ontology alignment and high-level tools that 
support them. Our brief review of graphical techniques for ontology definition, 
management and alignment portends a direction, but considerable work is 
needed to simplify the process so that domain specialists find it straightforward 
to achieve good results with high assurance. 
 
At the base of our recurse we strike what for us is bedrock: the definitions of 
logics, languages and ontologies themselves in terms of atomic components. 
Once again, we see a need for visual/graphical methods and tools for authoring 
and management of the language definition process. Such methods and tools 
must handle the arcane mathematics under-the-covers for the domain user while 
enabling the expert full, unfettered access and control. 
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Appendix 1: MOF based metamodeling 
 
A metamodel is a model that describes and structures another model. 
In the case of our illustrative example, the relational model of data is the 
metamodel for the purchase order line item schema, i.e., the line item schema 
conforms to the concepts, structures and constraints of the relational model of 
data – line items are represented as rows in a table; each line item must have a 
unique key; the table of line items must not contain duplicate rows; the rows of 
line items in the table are unordered; the columns of the line item table are 
unordered; etc. 
 
A metamodel may represent a language, i.e., its concepts, structures and 
constraints. 
 
In terms of our example, the “relational model of data” may equally be called the 
“relational metamodel”. 
 
Now come some thought-provoking questions: If a metamodel is a model that 
describes and structures another model, then a metamodel is a model in its own 
right. A model is expressed in a language, so what language is a metamodel 
expressed in? Doesn’t this create an infinite regress, since the language used to 
express the metamodel must itself be defined a priori? 
 
Let’s approach this question in a somewhat different order than it is phrased. A 
metamodel is indeed a model in its own right, and must therefore be expressed 
in a language. In the case of the relational metamodel, the language it is defined 
in is the mathematical language of set theory. This itself begs two more 
questions: “Is there a formal role for the language with which a metamodel is 
expressed?” and “In the case of the relational metamodel, is mathematical set 
theory some kind of meta-metamodel, and if so, in what language is set theory 
defined? 
 
There is indeed a formal role for the language with which a metamodel is 
expressed, and if it is expressed in the form of a model it is called a “meta-
metamodel”. Mathematical set theory is the meta-metamodel typically used to 
define the relational metamodel. 
 
However, mathematical set theory is the end-of-the-line, containing a small set 
of axioms that are assumed to be true, with the rest of set theory consisting of 
constructions, theorems and corollaries that logically follow from the given 
axioms. 
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(Aside: Some theoreticians in the mathematical discipline known as Category 
Theory utilize a special formal category to define set theory, making Category 
Theory, or at least a part of it, the new end-of-the-line. For the rest of the 
current discussion we will treat set theory as the stopping point of the 

representational regress.) 
 
We can graphically summarize these 
thoughts, presented to the right. This 
structure will be quite familiar to 
those steeped in the world of 
modeling and metamodeling, 
particularly as these are embodied in 

the standards of the Object Management Group. 
 
 
 
For our immediate purposes we designate the meta-metamodel as the end-of-
the-line, preventing an infinite regress by expressing the meta-metamodel in 
itself, i.e., the meta-metamodel is structured by and upholds the same principles 
it imposes on those metamodels defined with it. To put it another way, the meta-
metamodel is defined and expressed by its own concepts, structures and 
constraints. 
 
Let’s begin putting some tangible flesh on this skeletal discussion that has grown 
increasingly theory-laden. The UML standard, Unified Modeling Language, is 
defined as a metamodel, expressed in terms of a meta-metamodel called the 
Meta Object Facility, or MOF for short.7 Thus, UML the modeling language is 
defined by MOF concepts, structures and constraints. However, UML is not the 
only MOF conformant metamodel. There are many; some are adopted standards. 

                                        
7 UML and MOF are standards of the Object Management Group. 
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When discussing the various layers of representation in an OMG context we often 
designate these as metalevels M0-M3, as is shown in Figure 21. 
 

 
Figure 21 MOF Metalevels 

 (Aside: Not to cause confusion, MOF itself reuses a carefully chosen subset of 
UML. One may then conceive of the entirety of UML as defined and structured by 
a small core of UML, which is used to define and structure itself.) 
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In Figure 22 UML Metamodel, we see a fragment of the MOF conformant UML 
metamodel for “class”.  
 

 
Figure 22 UML Metamodel 

We can immediately see that the UML construct Class, as well as the constructs 
it contains, Attribute and Operation, are specializations of Classifier and Feature, 
which in turn are specializations of ModelElement. These last constructs – 
Classifier, Feature and ModelElement – are MOF constructs; in other words they 
are meta-metamodel elements used to define the UML metamodel. 
 
MOF metamodeling has intrinsic benefits that aid in the definition of a language, 
aside from the support MOF supplies for automating transformations. And UML is 
not the only language to be represented by a MOF metamodel. To understand 
these benefits, consider the ISO activity in progress to define a predicate 
language named Simplified Common Logic (SCL).  SCL will be the successor to 
the ISO Knowledge Interchange Format (KIF), and is based on the Common 
Logic work of John Sowa and others.  The authors expect SCL to be an important 
part of the Semantic Web.   
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The primary author of SCL is Pat Hayes, an expert in formal logic and one of the 
authors of the Semantic Web specifications.  Pat has been writing an SCL 
specification document that defines SCL’s abstract syntax, semantics, and a 
textual concrete syntax for the language.  He has simultaneously participated in 
an activity with some experts in Model Driven Architecture to define a MOF 
metamodel for SCL.  The metamodel captures SCL’s abstract syntax as a formal 
MOF model.  This is a case where, instead of defining the MOF metamodel for a 
language retrospectively—that is, after the language has already been defined 
and come into use—the MOF metamodel is being defined concurrently with the 
process of defining the language.   
 
The process of creating a MOF metamodel of the SCL abstract syntax has helped 
with the definition of the language, surfacing errors and raising issues that might 
have escaped notice otherwise.  As is typically the case for MOF metamodels, the 
SCL metamodel uses UML notation, and formally states invariant rules pertaining 
to the abstract syntax.  The visual model helps to make the abstract syntax more 
intellectually manageable; this, combined with the process of writing formal 
invariant rules, tends to “shake out” bugs in the language. 
 
Furthermore, the metamodeling team, including Pat Hayes, Elisa Kendall, David 
Frankel and Deb McGuinness, used a model compiler that is part of the Eclipse 
Modeling Framework (EMF).  The compiler implements XMI’s MOF-to-XML 
mapping (see Appendix 2, below), and thereby generated an XML Schema for 
SCL, which essentially constitutes an XML-based concrete syntax or serialization 
format for SCL.  The ISO may be able to use this Schema rather than having to 
laboriously hand craft an XML Schema.  The model compiler also generated code 
for serializing SCL expressions in and out of Eclipse, using the XMI-based 
Schema. 
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Appendix 2: Model Management with MOF and XMI 
 
The approach of Model Driven Architecture requires that MOF conformant 
metamodels be authored for each transformation source and target. MOF 
conformant metamodels are typically authored, viewed and edited in a graphical 
UML modeling environment, such as IBM’s Rational Rose and XDE. For the time 
being a full featured and complete environment requires a client-side application. 
 
What is less commonly known is that MOF conformant metamodels may also be 
created, viewed, queried, updated and deleted within a MOF repository. Think of 
a MOF repository as a multi-level database for managing the MOF meta-
metamodel, MOF conformant metamodels (such as the ones we’ve been 
discussing for UML and CWM), models that conform to these metamodels, and 
instance data that conform to the models – managing artifacts at and across all 
four meta levels. This can be seen in Figure 23. 
 

 
Figure 23 MOF Repository 

Contrast this with a typical RDBMS that offers a single fixed data abstraction – 
everything is a relation – the user of which may only define relational schemas 
and populate them with relationally structured data, even if the user is the 
database administrator with all the powers associated with this role. 
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A MOF repository can certainly be used for relational information: by importing a 
relational metamodel into a MOF repository one can now manage relational 
schemas, and can even manage relational data, i.e., rows, that conform to the 
schemas.8 
 
The crucial point, however, is that the very same MOF repository that is 
managing relational schemas and tables can at the same time be managing 
hierarchical schemas, multidimensional star schemas, XML schemas, ontological 
concepts and conceptual relationships... - anything for which a MOF conformant 
metamodel may be defined. Figure 24 Integrated MOF Repository, provides just 
a rough idea of this versatility, flexibility and representational power. 
 

 
Figure 24 Integrated MOF Repository 

Notice in this illustration the numerous modalities with which to interface and 
access a MOF repository, and these are just the modalities that have been 
standardized thus far. Two standardized programmatic interfaces are available: a 
Java API, known as JMI for Java Metadata Interface9 and a CORBA interface10 

                                        
8 We are not recommending that large operational stores of relational instance data be managed in a MOF 
repository in this fashion – they would be better managed in an RDBMS in order to benefit from the 
specialized physical schemas and optimizations incorporated in products that have been developed 
specifically to support relational data access and manipulation. 
9 JMI is a specification of the Java Community Process, specifically JSR 40. 
10 The MOF Corba interface is a standard of the Object Management Group. 
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providing MOF support to the many languages supported by CORBA. Interfacing 
with a MOF repository may also be accomplished in an XML document-centric 
fashion, supported by XMI, XML Metadata Interchange11, of which we will have 
more to say shortly. 
 
In passing we note that a modeling tool may offer support for these same 
interfaces and modalities without providing the persistence and server-centric 
features of a full repository. IBM’s Eclipse Modeling Framework and Sun 
Microsystem’s NetBeans are such environments, enabling metamodels and their 
conforming models and instances to be accessed and manipulated 
programmatically and input/output via XML. 
 
Since the transformation models we’ve been discussing are themselves models 
that conform to a MOF metamodel - the CWM transformation metamodel - these 
too may be defined, revised and generally managed within a MOF repository. 
This is shown in Figure 25 Managing CWM Transformation Rules. 
 

 
Figure 25 Managing CWM Transformation Rules 

Additionally, MOF repository implementations (e.g., commercial products), such 
as Adaptive’s ITPM, also support a web services interface utilizing WSDL 
descriptions and SOAP bindings, as well as an HTTP/HTML interface. This means 
that MOF conformant metamodels, models and instances can be created and 
                                        

11 XMI is a standard of the Object Management Group. 
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managed on the server-side, within a MOF repository, through a web service or 
even a thin client. Adaptive’s implementation even offers SVG (Scalable Vector 
Graphics) views of UML and MOF models, as well as browser-based model 
creation and editing through forms. 
 
There’s little doubt that client-side UML environments such as Rational Rose are 
most appropriate to serve as the primary means of authoring metamodels and 
transformation models. However, these tasks are unlikely to be fulfilled by 
individual developers working in isolation. Rather, this will become a 
collaborative process, involving the contributions of more than a single individual. 
A MOF repository provides the means for teams to collaboratively author, review 
and revise metamodels and transformation models, with some team members 
working through a tool like Rose, publishing to and retrieving from the repository; 
other members will work more in a review capacity, accessing the repository, 
viewing its contents through a browser and suggesting revisions; while other 
members will tweak and rev metamodels and transformation models through a 
forms interface and/or a web service. A MOF repository can support the 
collaborative team operating in all of these diverse modes while maintaining 
consistency. 
 
Such collaborative teams may be widely distributed, even working in a peer-to-
peer fashion; it’s important to note for operations of this type that a MOF 
repository needn’t be configured as a centralized installation. Figure 26 illustrates 
a (simple) federation of MOF repositories. Far more elaborate schemes may be 
configured. 
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Figure 26 Federated MOF Repositories 

Within a federate - a single MOF repository that’s part of a federation - clients 
may access and interface the repository through a programmatic interface 
(which could well include a web services interface). However, the connecting 
fabric between federates - that which constitutes the federation - is far more 
likely to be embodied by XML document exchange with its tolerance for 
unreliable networks and its friendliness towards loose coupling. This brings our 
discussion to the topic of XMI, which is covered in the next section. 
 

Serialization via XMI 
Basing metamodels on the MOF meta-metamodel pays additional dividends when 
it comes time to externalize such metamodels, and the models and instances 
that conform to them, beyond the environment in which they reside or were 
created, e.g., a MOF repository or UML modeling environment. We’ve already 
seen that the MOF’s APIs allow metamodels, models and even instances to be 
programmatically created, interrogated and managed. Beyond programmatic 
interfaces MOF also enables a modality by which metamodels and their 
conforming models and instances may be exported and imported as XML 
documents that conform to an XML DTD or XML Schema. 
 
This capability, called XMI for XML Metadata Interchange, is provided by a 
standardized transformation mapping MOF to XML, as seen in Figure 27. 
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Figure 27 MOF-XML Mapping 

We read this diagram as follows. The standardized XMI mapping takes as input a 
specific MOF conformant metamodel, a specific model that conforms to the 
metamodel, and a set of parameter values. The product of this transformation is 
an XML document that represents the specific input model, now in the form of 
XML, plus an XML DTD or XML Schema that represents the specific metamodel, 
and to which the produced XML document conforms. This becomes clearer when 
we look at an example. 
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In Figure 28 we see the case where the inputs are the MOF conformant 
metamodel for UML along with a specific UML model, e.g., a UML class model for 
the Employee class. The output is an XML document that represents the 
Employee class model, and an XML DTD or XML Schema that represents UML, to 
which the XML Employee document conforms. 
 

 
Figure 28 MOF-XML Mapping Applied to UML 

It is a common misconception that the XML DTD or XML Schema of this last 
example (that represents the MOF conformant UML metamodel) is the total 
extent of XMI. Though highly useful, this DTD and Schema is but one artifact 
that the XMI mapping can produce. XMI will produce a DTD or Schema for any 
MOF conformant metamodel. Examples include DTDs and Schemas for the CWM 
metamodels we looked at earlier, such as the relational metamodel, and any 
custom defined metamodels, such as ones that may be created for the 
information products of analyst tools and services. Even transformation models 
can be serialized as XML using XMI. The fact is XMI provides a common 
serialization/deserialization across all metalevels. This is seen by example in 
Figure 29. 
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Figure 29 XMI Products Across Levels 

Export via XMI is one side of the equation, but it also supports import. These 
transformations can essentially be run in reverse order, taking an XMI XML 
document as input and recreating the original model. Some implementations of 
XMI that support this process do not even require the XML DTD or Schema when 
performing the import – they literally read the metamodel, rather than the DTD 
or Schema, and use it to parse the XMI document. 
 
There’s another interesting twist on the process, this one also regarding XML as 
input. The XMI standard will also create a model when the input document is 
XML but not XMI compliant. This is shown in Figure 30. In other words, if one 
has an existing XML DTD or Schema, created by any means, one may use the 
XMI machinery to reverse engineer the model that is implicit within. One must 
provide or specify the metamodel that this model will conform to; this is typically 
the UML metamodel, but it needn’t be. 
 

 
Figure 30 XML-MOF Reverse Mapping 
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While it should be noted that non-XMI XML lacks some of the information 
captured by XMI XML, and thus reverse engineering may not produce as rich a 
model as if one had created it in a UML modeling environment in the first place, 
this reverse engineering provides an excellent starting point for model 
development. Consider the notional process below. 

1. Start with an existing XML DTD or Schema (to which existing instance 
data, represented as XML documents, conforms)  

2. Automatically reverse engineer its UML model (or model that conforms to 
a different metamodel)  

3. Revise and elaborate the model  
4. Apply forward generation to produce a new DTD or Schema that conforms 

to the elaborated model  
5. Define a transform between the old, reverse engineered model and the 

new elaborated one  
6. Execute the transform to move XML document data to the new elaborated 

model as represented by the new XML DTD or XML schema 
 
XMI is a flexible and agile means for moving metamodels, models and instances 
between repositories and tools of all sorts.  
 
 
 
 


