
Roadmap for Semantics in Netcentric Enterprise Architecture 1 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Roadmap for Semantics in

Netcentric Enterprise Architecture

Prepared for the Office of the CTO, US General
Services Administration

February 2, 2006

Erick Von Schweber
Synsyta LLC

erick@synsyta.com

Executive Summary

A multi-stage roadmap is presented by which to incrementally transform today's
static, rigid Enterprise Architecture into a dynamically fluid and fully netcentric
architecture that enables automated interoperability without requiring uniformity.
A concrete worked example demonstrates the recommendations of the first
stage.

Roadmap for Semantics in Netcentric Enterprise Architecture 2 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Contents
Roadmap for Semantics in Netcentric Enterprise Architecture.......................... 1

Executive Summary ...1
Introduction ..3

Our Approach...3
Motivation - Living, Liaising Languages ..3
Prerequisites - what you should know to read this ..8

The Roadmap at a Glance ..10
Trends over the course of the roadmap ...10
Assumptions and preferences..10

The Roadmap in Detail ...11
Point of Departure..11
First Stage – Automated Interoperation Of Heterogeneous Languages And Ontologies11
Second Stage – Collaborative Ontologies and Composable Language.................................20
Third Stage – Living, Liaising Hubs ..27
Fourth Stage – Living, Liaising Languages..31

Worked Example of First Stage Approach ..32
Worked Example part one – Language Map ...32
Worked Example part two – Domain Map ..40

Next Steps: beginning the adventure ..50
References ... 51
Appendices .. 54

Appendix I - Information Flow (IF) proto-primer ..54
Appendix II – Representing Chu Transforms as Chu Spaces ...56
Appendix III – Power Types ...58
Appendix IV – Managed Logic...59

Roadmap for Semantics in Netcentric Enterprise Architecture 3 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Introduction

Our Approach

What the Roadmap is
The roadmap lays out the incremental development and evolution of a
framework for supporting language and knowledge evolution and interoperability.
It is the development of this framework for which the roadmap provides
prescriptions, proscriptions, advisories and cautions.

What the Roadmap is not
The roadmap is not a rigid prescription - as we drive we may change direction
and replan the course ahead.

Motivation - Living, Liaising Languages
Information technology is currently in the midst of a transformation. In 1998 the
architects of this roadmap went public with a model of where they saw the
industry heading, based on their research and long-time experience in the
industry. The model identified a new transformation that was at the time just
beginning – the third wave – a transformation into an era we call Computing
Fabrics [Von Schweber 1998c]. Whereas the industry began with uniprocessing
(the first wave) in the 1940's, and began a transformation into parallel and
distributed processing in the late 1970's and early 1980's (the second wave), the
third wave, Computing Fabrics, would transform rigid and static distribution of
functionality into a fluid, dynamic fabric that blurred the very distinction between
system and network, where system boundaries exhibit plasticity.

Nine years later evidence of the third wave surrounds us, in blade servers,
wireless mesh networks, Web 2.0, P2P, grid computing, social networks, service
oriented architecture (SOA), systems of systems, …, the list goes on and on.

Roadmap for Semantics in Netcentric Enterprise Architecture 4 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

What is not commonly recognized is that this wave is a transformation of
clockwork mechanism into living technology. Consider netcentricity; this is not
merely the notion of employing multiple services and systems on and across the
network. Rather, systems and services will come and go, entering and departing
the network, even changing out from under it. Yet the systems of systems
comprised of such network resident services must remain functional, continuing
to meet their quality of service contracts in terms of capacity and capability.
While achieving this is just the beginning it already catapults us into the realm of
biological behavior, including metabolism, locomotion and reproduction.

Beyond this, the overwhelming value of netcentricity, collaboration, systems of
systems, semantic interoperability and service oriented architectures will only be
realized when we acknowledge that systems, to collaborate, must possess
plasticity of form and function – they must have the capacity to change, adapt,
learn. To get serious value from netcentrism requires more than a mapping of
one rigid system to another; it requires self-transformation whereby each
constituent may grow in a manner that they may comprehend the other. Each
entity achieves this by taking on, as its own, aspects of the other, aligning and
merging these new aspects into its being. Each participant must change, learn
and evolve.

For me to benefit from your knowledge I must learn, which inextricably changes
me, the learner, as to learn is to change and grow. One who is rigid cannot learn
and therefore cannot benefit from the knowledge and skills of others. As it is
with such social networks so it is with netcentric technologies.

Roadmap for Semantics in Netcentric Enterprise Architecture 5 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Advanced interoperability requires reciprocal learning whereby each participant
becomes more than they were before interoperating; interoperability demands of
its participants that they exhibit plasticity, capable of change at an arbitrarily
deep level. This is deeply biological. When an ecosystem is extended through
introduction of a foreign species new and existing species alike may co-evolve to
exploit the fitness landscape of the newly extended ecosystem. Co-evolution is a
process of reciprocal evolutionary adaptation through self modification.

Such co-evolutionary symbiosis separates ecosystem from mere system;
ecosystem constituents must be able to change, adapt, learn. A system becomes
an ecosystem only when its constituents acquire this ability to symbiotically co-
evolve. Living, liaising languages are a means to bring this cultural co-evolution
and symbiosis to our netcentric technology, including SOAs, systems-of-systems,
semantic interoperability, collaboration, etc.

The state of the art in ontologies and ontology languages today are a far cry
from living languages. Consider a conversation between two software agents,
one based on a reasoning engine using modal logic (Modal agent) and another
agent using OWL-DL.

Modal agent: There MayExist x such that [(in(x,y) AND heaven(y)) OR (in(x,z)
AND Earth(z))] AND [NOT(in(x,r) AND philosophy(r,OWL)]

OWL agent: (silence)

(apologies to Shakespeare)

Roadmap for Semantics in Netcentric Enterprise Architecture 6 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

While this fictional exchange was meant to be tongue-in-cheek it is indicative of
the kind of netcentric communications we can expect given the best of ontology
mediated communication. This is the antithesis of human communication, where
the parties will learn and adapt in order to establish a meaningful exchange.

To get the kind of netcentricity worth wanting we must move beyond the
clockwork mechanism.

Enterprise Architecture in a netcentric world must acknowledge the era it is in
and address the shortcomings and limitations of previous eras' technologies.
That means transforming static and rigid languages, ontologies, models,
schemas and mappings into their fluid, dynamic, living descendants. We refer to
this new breed as Living Liaising Languages.

The question becomes: how are programs, such as GSA's OsEra (Open Source
Egov Reference Architecture) to transform themselves incrementally from where
they are today to where they need to go?

The roadmap you are reading is a considered answer to that question.

Just the first stage of the roadmap enables automating the mapping of semantics
from one community, expressed in their language, to a distinct semantics of
another community, expressed in a distinct language. Furthermore, such
mappings and transformations may be managed and executed in the mainstream

Roadmap for Semantics in Netcentric Enterprise Architecture 7 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

technology of the p resent, a relational database management system; no
expensive, novel infrastructure required.

Those wishing to bypass the theory and planning and just get a look at a
concrete example may wish to jump ahead in this document to the worked
example. There we:

• Transform UML class models into OWL-DL ontologies for management
in a semantic web repository, to post on the web, visualize with an
ontology editing tool (e.g., Protégé), as content for a web page,
semantic markup of a web service, or for input to a reasoning engine.

• Transform OWL-DL ontologies into UML class models for management
in a MOF repository, visualization and editing in a UML tool, or to apply
within a model driven architecture effort.

Roadmap for Semantics in Netcentric Enterprise Architecture 8 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Prerequisites - what you should know to read this
While this roadmap introduces several advanced mathematical tools, prior
knowledge of these, or discrete mathematics in general, is not required. A
worked example conveys the power of the tools in the domain of interoperability
and Enterprise Architecture. Descriptions of each stage of the roadmap include a
summary table requiring absolutely no mathematical skill to understand and
appreciate. Each summary table describes the what, why and expected results of
each stage, and it does this for three key topics (see below). However, those
with a background in computer science or mathematics will be able to get more
out of the detail sections of roadmap stages.

How to read and use the roadmap
Think of a road. First you notice that it has multiple lanes, some for faster traffic,
some for slower, and one for entering and exiting. Then as you drive the road
you notice its on-ramps, which bring new traffic onto the road, and off-ramps,
which provide a choice of destinations and an opportunity to rest and refuel.
Much later you see new road being built and learn that a road has many layers,
where lower layers provide a stable foundation for higher layers and the road
surface.

Importantly, as you move ahead on the roadmap, from early to later stages, the
character of the recommendations changes. In Stage 1 the roadmap makes
certain prescriptions, i.e., "Do this!". But later stages of the roadmap should be
taken as suggestions or explorations, not hard and fast prescriptions. The aim of
course is to research, verify and flesh-out subsequent stages of the roadmap as
we move ahead; we're building the road as we go but we're planning and
staging our road crews well in advance of driving.

Structure of the Roadmap
Each stage of the roadmap is accompanied by a summary table. The three
columns – Definition, Derivation and Execution – present the key aspects of the
framework at that stage.

• Definition – Means by which the framework supports defining, revising
and extending language systems, including things like the language
syntax and semantics, idioms, ontologies, models and schemas.

• Derivation – Means by which the framework supports deriving mappings
and transformations between language systems (think translation).

• Execution – Means by which definitions and derivations may be
implemented, managed and executed.

Roadmap for Semantics in Netcentric Enterprise Architecture 9 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

This is what each summary table looks like (sans the actual content).

 Definition Derivation Execution

What:
Prescriptions

& Proscriptions;
Advisories

& Cautions

Why:
Motivation

& objectives

Key tasks
Expected
Results:

Improvement
above and beyond
the previous stage
(e.g., comparative

advantages)

Roadmap for Semantics in Netcentric Enterprise Architecture 10 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

The Roadmap at a Glance

Trends over the course of the roadmap
• Evolution of community models from totalitarian dictatorship (one dictated

world view at point of departure) through hub and spoke to egalitarian
society (each to their own); from homogeneity to heterogeneity; from
maximal required commonality to minimal required commonality

• From non-collaborative to collaborative
• From static and rigid to living and evolutionary
• Evolution of meta language from RDF to OWL-DL to OWL-RA to single-

math Institution to poly-math Institution to poly-math Parchments
• Evolution of separation of concerns, from syntax to multiple dimensions
• Evolution of infrastructure focus from classifications to theory

compositions

Assumptions and preferences
• Exploit available tooling and standards where prudent
• Exploit mindshare
• Build on success
• Evolve incrementally and improve continuously

Roadmap for Semantics in Netcentric Enterprise Architecture 11 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

The Roadmap in Detail

Point of Departure
• Semantic Core [Casanave 2006], i.e., non-composable language, the

result of manual analysis and composition, serving as a hub

First Stage – Automated Interoperation Of Heterogeneous
Languages And Ontologies

First Stage
 Definition Derivation Execution

W
h

at

Employ an ontology
language to
capture definitions
of community
languages as
ontologies.

Capture domain
semantics, models,
schema and
instance data
within each
community's native
language(s).

Apply the mathematics
of Information Flow
(IF), Chu Spaces and
Transforms and Galois
lattices toward
automated derivation of
mappings between
multiple languages,
between multiple
ontologies, between
ontologies and
schemas, and between
multiple schemas.

Manage language
definitions, domain
semantics, and mappings &
transformations of these
within mainstream relational
database management
systems.

Process and manipulate the
above using standard
database methods, e.g.,
SQL.

W
h

y

Tolerate
heterogeneity
within and across
communities while
simultaneously
managing and
manipulating
community artifacts
in a unified fashion.

Test data, examples
and common instance
data can provide the
reference points from
which advanced
mathematics can
automate the derivation
of semantic mappings
and transformations.

Exploit commodity
infrastructure.

Process and manipulate
data where it already lives.

Build semantic applications
following current best
practices, skills and tooling.

Roadmap for Semantics in Netcentric Enterprise Architecture 12 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

First Stage
 Definition Derivation Execution

K
ey

 t
a

sk
s

Extend OWL-FA
into OWL-RA

Develop idioms for
supporting Power
Types in an OWL-
RA context

Develop and apply suite
of test cases and test
"data" for semantic
mappings.

Manage OWL-RA artifacts in
RDBMS by integrating and
extending vendor's existing
XML, RDF and object
relational capabilities.

Implement Chu Space
algorithms in SQL

R
e

su
lt

s

Foundation for
heterogeneous
interoperability.

Interoperability across
diverse schemas and
models using distinct
domain semantics
expressed in disparate
languages.

Scalable interoperability
solution easily deployable
far and wide.

Note to the reader: A fully worked example of the Stage One approach and its
concepts and technology may be found in the Worked Example of First Stage
section of this paper.

Roadmap for Semantics in Netcentric Enterprise Architecture 13 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Destinations of the First Stage
• Support for an open-ended collection of languages used to represent

domains and their semantics, e.g., OWL, UML and EDOC employed to
model systems and artifacts within the financial management domain

• Select an ontology language to serve as the initial meta language for the
framework

o The chosen ontology language becomes the common meta
language for the community of languages, i.e., a common means
to:
§ Represent each language's definition
§ Represent language artifacts
§ Manage language artifacts

o Employ OWL-DL as the "base" ontology language, based on its:
§ Expressivity
§ Decidability
§ Serializations, particularly RDF/XML
§ Web support, e.g., ontology elements as publishable web

resources
§ Standardization
§ Community
§ Growing tool support: visual editors, repositories, reasoners
§ Mindshare vis-à-vis the Semantic Web

o Define OWL-RA, as defined by Von Schweber, as an extension of
the base, exhibiting a Relative metamodeling Architecture.
§ OWL-RA is based on the ideas of OWL-FA (Fixed layer

metamodeling Architecture) [Horrocks01], [Horrocks03],
[Motik05], [Pan2003], [Horrocks05]

• OWL-FA is decidable and supports metamodeling
• OWL-FA extends OWL-DL based on the extensions of

RDF-FA to correct RDF's non-standard semantics
while making it suitable for metamodeling

§ OWL-RA will define compartments for instances, classes,
power types [Cardelli87], [Brodnik91], etc. and the
interrelationships between compartments, all in a fashion
compatible with DL reasoners (based on but relativizing
OWL-FA's fixed layered architecture)

§ Benefits include:
• Decidability (compared with an OWL-Full approach to

support meta modeling)
• Standard semantics (compared with the non-standard

semantics of OWL-Full and RDF)
• Support for metamodeling without the straightjacket

of a linear metalevel stack; an arbitrary modeling

Roadmap for Semantics in Netcentric Enterprise Architecture 14 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

element may be related to multiple meta constructs
without these comprising a linear stack.

o Define an OWL-RA idiom to accommodate many-to-many mapping
of terms to classes/properties, thereby achieving a separation of
concerns between terminology and semantics, cleanly allowing for
synonyms and homonyms.
§ Idioms are language patterns that create a dialect of use

• For example, Sergey Melnik and Stephan Decker
present six independent RDF graphs that represent
the commonly held (but non factual) belief that
Mozart composed the Requiem with the assistance of
Salieri [Melnik2004]. We see each of their
representations employing a distinct language idiom
that may be objectified and made explicit.

• Each language idiom may be represented as an
ontological template that does not require
quantification over classes and therefore avoids the
need for higher order logic [Goguen 2005, private
communication]

• Define each community language using the framework's meta language
o Define Semantic Core using the framework's meta language; this

produces an ontology of Semantic Core, or more generally, a
"theory" of Semantic Core.

o Define each community language using the framework's meta
language. This produces an ontology of each language; more
generally we refer to each product as a "theory" of its respective
language.

o Obtain ontology class and property instances for each language
theory:
§ For a language theory (a theory that represents a language)

an instance (also called a token) of the theory is a sign (in
the sense of Pierce's triadic semiotics) for a domain concept,
e.g., Unit Price; it is not a language's representation of the
domain concept, e.g., a UML attribute or OWL-DL class
representing Unit Price.

§ For a domain theory (a theory of a specific domain) an
instance is a sign for a domain entity or relationship; it is not
an OWL instance or a UML data element, etc.

o Derive an IF-classification from each instantiated ontology (where
an instantiated ontology may represent a domain theory or a
language theory). This idea first appeared in IF-MAP (see below).

• Derive mappings between community languages and also between
domain ontologies expressed in community languages

Roadmap for Semantics in Netcentric Enterprise Architecture 15 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

o Represent each ontology mapping (between pairs of ontologies) as
an Information Flow (IF) [Barwise97] infomorphism between their
respective derived IF classifications. (See Appendix I - Information
Flow (IF) proto-primer.)
§ The idea of merging ontologies in a bottom-up fashion

based on ontology instances appeared in FCA-Merge
[Stumme01].

§ FCA-Merge employs FCA'S (Formal Concept Analysis) formal
context, a construct essentially equivalent to a classification
of Information Flow or a Chu Space. FCA–Merge then forms
a Galois lattice over a merged formal context. In comparison,
the method we employ in Stage 1 of the roadmap innovates
and extends upon FCA-Merge in two ways. First, we
represent the merged Chu Spaces as relations in a relational
database management system, enabling the mappings to be
derived by SQL stored procedures directly within the
database, thus enabling wide-spread application of our
approach. Second, we apply the method recursively: (i) first
to derive a language map, and then within the context of the
"merged" language (as defined by the language map) we (ii)
derive a domain map. Thus the method we employ may be
used to align, merge and map distinct ontologies expressed
in distinct ontology languages. Further, our recursive
application methodology may be continued, e.g., to align
distinct schemas/models grounded within distinct ontologies
expressed with distinct language idioms of distinct languages.
This makes our approach applicable to the general class of
interoperability scenarios encountered in the real world.

§ The idea of representing ontologies as IF Classifications and
ontology alignment/merge mappings as IF infomorphisms
first appeared in IF-MAP [Kalfoglou05].

§ The IF-MAP approach extends the applicability and
correctness of the FCA-Merge method to mapping situations
where common instances may be unavailable, such as is
often encountered when aligning a local or "spoke" ontology
with a reference or "hub" ontology as hub ontologies
frequently lack instances or instance data. IF-MAP, as it is an
application of Information Flow to the problem of mapping
ontologies, treats each ontology as a local logic. The local
theory of a local logic may be used to derive "formal
instances" that may then be utilized in the alignment process.

§ The methodology of IF-MAP employs a generate-and-test
approach and recognizes that ontologies have two overall
groupings of elements: classes and relations. From a very

Roadmap for Semantics in Netcentric Enterprise Architecture 16 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

high level the IF-MAP algorithm first generates a candidate
infomorphism between local and reference logics, applies the
candidate infomorphism to the relations of the local and
reference logics, and if this produces valid results then
applies the same infomorphism to the classes of the local
and reference ontologies and evaluates the mapping.
Eventually the generate-and-test loop will identify one or
more candidate infomorphisms that both respect the local
and reference classifications and respect each one's
constraints (the respective local theory). A slightly more
detailed description of the IF-MAP algorithm follows.

IF-MAP Algorithm
1. Begin a "generate and test" loop.

a. First attend to mapping relations.
i. Generate a candidate infomorphism and apply it between a reference

relation and a local relation (this generate step is a random selection from the
classification of local instances according to a local relation).

ii. Identify the consequence of the candidate infomorphism on arities (i.e., on
the arguments of the relations, implied by the candidate infomorphism
applied to relations).

iii. Repeat this for the remaining relations until all relations of the reference and
local ontologies are mapped.

iv. Consider the infomorphism arrived at by this process as a provisional
infomorphism (there may be other possible infomorphisms and we do not yet
know this is the best one to use)

b. Now apply the provisional infomorphism to ontology classes and instances.
i. Apply the provisional infomorphism in order to classify instances of the local

ontology according to classes of the reference ontology.
ii. Identify formal instances of the reference ontology whose classification

(according to classes of the reference ontology) is identical to the
classification of local instances (according to the classes of the reference
ontology). The "connections" so identified determine the token map of local
instances to reference (formal) instances. Furthermore, these connections
respect the logic infomorphism between local theories because the formal
reference instances "carry" the regular theory of the reference ontology.

iii. If this identification fails or cannot be achieved then discard the provisional
infomorphism and return to step 1.a.i, randomly select another infomorphism,
and continue the process from there.

iv. With success promote the provisional infomorphism to working "logic
infomorphism" and exit the generate and test loop.

• The IF-MAP algorithm, while not computationally efficient (it has

an order of complexity exceeding o(nlogn)), is applicable to
smaller ontologies, hence its utility in a progressive alignment
process (see Stage 2 of the roadmap for a discussion of
progressive mapping).

o Represent each IF-classification as a Chu Space [Pratt05a],
[Pratt99].

Roadmap for Semantics in Netcentric Enterprise Architecture 17 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

§ A Chu space may be represented as a simple table of rows
and columns

§ Represented as a tabular data structure, each Chu Space
may thus be managed and processed as an array in a
programming language; a matrix, a relational database table,
a spreadsheet, etc.

§ Employ a workaround if the resulting Chu Space is not
biextensional, e.g., add a column to distinguish otherwise
duplicate rows; add a row to distinguish otherwise duplicate
columns

o Represent each infomorphism (between pairs of classifications) as
a Chu Transform.

o Represent each Chu Transform as a Chu Space

§ Following all of these prescriptions means that a language, a
domain ontology, a language mapping and a domain
mapping may each be represented and processed as a Chu
Space using a tabular data structure.

§ In this way languages, ontologies and mappings may all be
represented and processed using the same infrastructure,
i.e., tooling and methodology.

§ To represent a Chu Transform as a Chu Space requires that
the source Chu Space be extensional, i.e., no duplicate rows,
and the target Chu Space be separable, i.e., no duplicate
columns. See workaround (above) when needed.

Roadmap for Semantics in Netcentric Enterprise Architecture 18 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

§ (See Appendix II – Representing Chu Transforms as Chu
Spaces.)

• Execute language and ontology definitions and mappings
o Manage all Chu Spaces as relations in an RDBMS

§ An abstract syntax, including a relational schema, is defined
by which Chu Spaces may be embodied and processed as
relations.

§ A relational schema is developed or otherwise obtained to
manage artifacts expressed in the framework's meta
language (i.e., OWL-RA)

§ A set of "model to text" mappings between the abstract
syntax of the framework and the world of surface syntaxes
is defined and supported by the facilities of the DBMS
[Wigetman06]

• Standardize on XML representations for surface
syntaxes supported by an open-ended collection of
XSDs (XML Schema Definitions)

• Employ DBMS load operations to transform each XML
surface syntax into the abstract syntax of DBMS-
resident Chu Spaces and ontologies in order to load
artifacts into the DBMS

• Employ DBMS SQL functions and/or stored procedure
packages to serialize abstract syntax as XML surface
syntaxes in order to export artifact from the DBMS

§ Process relationally-embodied Chu Spaces using SQL, e.g.,
to navigate Chu Spaces, derive transformations/mappings,
apply transformations/mappings, derive the Galois lattice
(described in the Worked Example of First Stage section
below) over each Chu Space that represents a classification,
etc.

o Obtain/provide common instances for ontologies to be mapped,
e.g., aligned and/or merged.

o Employ a Chu Space embodiment of an "FCA-Merge"-like technique
[Wille96], [Stumme01], [Priss05] to map two ontologies having
common instances.
§ Employ techniques, e.g., as supported by NeoLogical

SURVEYOR [Von Schweber 2004] for knowledge surveying,
to implement and extend FCA-Merge techniques to provide a
scalable infrastructure.

§ The infomorphism between two ontologies, say A and B, is
represented as a classification of one ontology's tokens, say
A's, according to the types of the other ontology, say B's
(where this infomorphism is a Chu Transform represented as
a Chu Space itself). The dual classification that classifies B's

Roadmap for Semantics in Netcentric Enterprise Architecture 19 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

token according to A's types may be recovered from the Chu
Transform as Chu Space. [Vaughan Pratt 2005, private
communication]

Roadmap for Semantics in Netcentric Enterprise Architecture 20 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Second Stage – Collaborative Ontologies and Composable
Language

Second Stage
 Definition Derivation Execution

W
h

at

Develop a meta ontology
of language concern
dimensions to augment
Semantic Core. This
becomes a starting point
for defining living
languages, e.g.,
ontology languages that
may be functionally
extended by composing
them with additional
language components.

Extend Information
Flow, Chu Transforms
and lattice methods to
support progressive,
incremental and
collaborative mapping
and interoperation.

Provide the means for
users to find common
community
"examples", i.e., IF
tokens, that they can
point to.

Adapt and apply Web
2.0 technologies
(AJAX, RSS, P2P
tagging, etc.) to
implement
collaborative semantics
and collaborative
interoperability, thus
enabling semantics to
be authored and
revised in a web page
within the user's work
context.

W
h

y

Define, revise and
extend language; fosters
modularity with
consistency; improves
reuse and paves the way
for additional automation
of interoperation and
more effective
collaboration in future
roadmap stages.

Circumvent "lowest
common denominator"
interoperability, i.e.,
when the consumer's
language is not
sufficiently expressive to
represent knowledge
provided by a producer's
richer source language.

Realize "continuous
improvement" in
interoperability while
keeping end points
loosely coupled. For
example, each user
and community
becomes free to
independently evolve
their own semantics,
as in a user adding
meta data to a web
form so that they may
provide additional,
relevant data while
relating this new data
to existing community
data, thus enabling
interoperability.

A move to
collaborative methods
requires light weight,
agile implementations,
e.g., to incorporate
users into the process
of developing, revising
and mapping their
semantics with the
community's we
cannot insist that the
user install and learn
thick client ontology
tooling. Rather, a user
must be able to simply
go to a web site that
provides all the
capabilities they need
without breaking the
context of their work
and their domain.

Roadmap for Semantics in Netcentric Enterprise Architecture 21 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Second Stage
 Definition Derivation Execution

K
e

y
ta

sk
s

Extend Semantic Core
with a meta ontology of
language concern
dimensions.

Extend framework's
meta language with
composition operators.

Explore and harvest e-
Connections research.

Develop process for
collaborative mapping
by applying and
extending progressive
mapping techniques.

Explore the derivation,
simplification and
application of "formal
instances".

Develop knowledge
surveying application
to survey community
types and tokens
within the user's
context.

Develop a collaborative
web site using
extended AJAX and
related Web 2.0
technologies for
community semantics.

R
e

su
lt

s

Users and their
communities freed from
the constraints of rigid
formalisms and centrally
dictated mandates can
interoperate without
information loss.

Progressive,
incremental and
collaborative mapping
rather than mapping,
alignment and
merging that is all-or-
nothing, all-at-once
and individual and
isolated.

Users and user
communities on the
knowledge fabric take
control of their
semantics and meta
data without breaking
interoperability, i.e.,
think locally,
interoperate globally.

• Collaborative ontology mapping and collaborate-to-interoperate

o Progressive mapping of language theories and domain theories
§ In Stage 1 we align, merge and generally map ontologies in

their entirety and all-at-a-time. While this is an excellent
strategy to preserve integrity and consistency it leaves open
the question, for example, of how changes may be applied
to large ontologies that have already been mapped without
breaking the existing mapping.

§ Here in Stage 2 we aim to enable an incremental mapping of
ontologies, say for example, as the ontologies change and
evolve.

§ The IF-MAP method pioneered by Kalfoglou and
Schorlemmer has been extended by its authors to support
what they call "progressive" mapping. [Schorlemmer05a]

Roadmap for Semantics in Netcentric Enterprise Architecture 22 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

§ In Stage 2 we embrace and extend progressive mapping
methods but implement and operate such in our Chu Space
formulation (rather than their native Information Flow form).
Part of our extension is to apply progressive alignment to
language theories as well as domain theories operating in a
merged language context.

o Collaborative mapping
§ Once the framework has gained support for progressive

ontology alignment and mapping we can build upon it to
enable collaborative mapping.

§ Collaborative mapping is based on the idea that each
individual and each group of individuals (regardless of
hierarchic level) likely possesses their own ontology and
potentially their own language (at the very least, their own
language idioms). This makes for a vast knowledge fabric of
ontologies, idioms and languages, with individuals mapped
to each other and to the communities of which they are a
part, plus communities mapped to other communities and to
the subsuming communities of which they are a part.

§ Collaborative mapping is the application of automated,
progressive mapping techniques to maintain this "social"
knowledge fabric, such that end-to-end interoperation
becomes possible across the fabric but without the tyranny
of mandatory global ontologies, idioms and languages (on
any scale).

§ Power is pushed out to the network's edge rather than
concentrated (and mandated) at the center. This inextricably
brings the user into control of not only their data but also
their metadata and potentially the language they use to
express knowledge. Upper ontologies become emergent
artifacts from the view of collaborative mapping.

§ To so enable users and user communities requires that they
be empowered with the necessary tools. But thick client
applications, designed for knowledge engineers and
developers, that require training, skill and significant
compute resources, just won't do.

§ To push the power to the edge requires that we at minimum
emulate, if not outright adopt, the Web 2.0 technologies that
are leading the charge in social computing. [O’Reilly05]
Prime among these are AJAX (Asynchronous Javascript and
XML) as it brings rich GUI functionality, like drag and drop,
to browser-based applications without the need for plug-ins,
applets or the like.

Roadmap for Semantics in Netcentric Enterprise Architecture 23 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

§ We must be very conscious when selecting, adopting and
applying Web 2.0 technologies, as they commonly make
assumptions that are not entirely compatible with the
objectives of this effort. For example, AJAX assumes network
connectivity to the server in order to function; disconnected
work using an AJAX approach is not something one gets “out
of the box”.

§ The approach we advocate for the use of Web 2.0
technologies involves replicating light-weight server
components to the local client machine; this may include a
web server and a persistent store. This architectural pattern
was applied to 3D computing and VR in [Von Schweber
1998a] and [Von Schweber 1998b]. This marries the
benefits of Web 2.0 with disconnected operation, and it
gains additional concomitant advantages.

§ Specific Web 2.0 products that may be useful towards
building collaborative mapping:

• Tibco General Interface
• Morfik Javascript Synthesis Technology and WebOS

Apps Builder
• ICESOFT ICEfaces
• Sun Java Studio Creator

§ Using our flexibly-connected variant of Web 2.0 we must
enable a user or user community to extend their domain
ontology without breaking the context of their work or task.

§ For example, a user filling out a web form may be unable to
enter relevant data for lack of an appropriate form field.

§ Said user should be able to dynamically create a new field
and populate it with the relevant data, but in and of itself
this is insufficient and hazardous. From the system's point of
view the user created field constitutes new meta data of
which it knows nothing, potentially a new element of the
system's domain ontology.

§ There are two overall ways that suggest themselves for
handling this situation; each makes a different set of
assumptions.

• If we assume the user has no personal domain
ontology then we want to induce the user into
educating the system about the newly created field,
specifically the domain ontological concept that
defines the field. In the spirit of the instance-based
mapping approach we advocate in this roadmap we
must obtain from the user instances of this concept,
ideally "common" instances already known to the

Roadmap for Semantics in Netcentric Enterprise Architecture 24 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

system's domain ontology. This initiates progressive
mapping between the newly suggested user concept
and the system's existing domain concepts.

• If we assume the user possesses their own personal
domain ontology (with instances) then we initiate
progressive mapping between the user's domain
ontology and the system's.

§ In both of these cases we employ knowledge surveying, e.g.,
NeoLogical SURVEYOR, to adaptively identify the most
suitable contexts for the progressive mapping. Knowledge
surveying may reveal common instances (between user and
system) and one or more existing concepts in the system's
domain ontology that may be used to define the new field.
In any event the user is enabled to provide additional data
that becomes understandable to the system and its other
users.

§ We recommend exploring the use of personal ontologies
(the second scenario above) for each user and user
community.

o Construct formal instances for each ontology. This is critically
important when an ontology possesses no instances in common
with another that it is to be aligned/merged with, as for example
with a hub ontology, e.g., Semantic Core.
§ IF-MAP refers to a fundamental theorem of representation of

Information Flow that provides the basis for constructing
formal instances. This is the Representation Theorem 9.33 of
Barwise and Seligman.

§ A set of derived formal instances reflect the theory of the
local logic, i.e., they manifest the constraints obeyed by the
types of the classification, but they are typically awkward (to
look at one it is not at all obvious what they mean out of
context, compared to say, a domain token).

§ Explore the use of the structure of Semantic Core to simplify
the structure of the formal instances derived from it so that
such formal instances are more user friendly. Note:
Semantic Core has already simplified the mapping by
identifying the core constructs of each supported language
(simplified as compared with a simple amalgamation of all
constructs from the languages supported)

§ Even when common instances are available, formal
instances reify the local, potentially regular theory of the
ontology and the infomorphism then respects the local
theories, hence it is a logic infomorphism. Thus formal

Roadmap for Semantics in Netcentric Enterprise Architecture 25 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

instances are valuable even for scenarios that posses
common instances.

• Composability
o e-Connections (note e = Epsilon) [Grau04], [Grau05] to tease apart

modules and represent the "system" of ontology modules (noting
that these ontology modules may represent language semantics or
domain semantics).

o Language concern dimensions populate a meta ontology as
language-specific Powertypes, (see Appendix III – Power Types)
e.g., for decomposing Semantic Core on a finer scale and
supporting Multi Dimensional Separation of Concerns (MDSOC). Key
dimensions include:
§ Abstract syntax constructors – the elements of the syntax of

a language, including both logical and non-logical symbols.
§ Idioms – the "design patterns" of a language, designating

and itemizing the many ways a language may be used (e.g.,
Melnik and Decker showed six ways that RDF may be used
to express the commonly held (but false) belief that Mozart
composed the Requiem with the assistance of Salieri).
[Melnik2000]

§ Axiomatic Semantics – the axioms (i.e., sentences) that
collectively define a language's semantics

§ Proof Theories – the inference patterns supported by a
language that produce valid conclusions, e.g., modus ponens.

o Galois lattice over the classification of language tokens by language
types
§ In Stage 1 we form the Galois lattice over a merged Chu

Space (we do this for both language and domain mappings).
§ Here in Stage 2 we (additionally) form a Galois lattice over a

merged Chu Space where language concern dimensions are
types and concern dimension values are tokens.

§ This parallels the Information Flow Framework's (IFF)
Lattice-of-Theories (LoT) but at the language level (the IFF
LoT operates at what we've been calling the domain level,
albeit the "upper" part.

§ This construction sets the stage for the composition of
language definition (molecules) from language elements in
the spirit of Managed Logic (see Appendix IV – Managed
Logic).

o Moving in the direction of a composable axiomatic semantics
§ Extend each IF classification of an ontology (domain or

language) to a full local logic
• The local logic adds to the classification all of the

constraints met by types of the classification.

Roadmap for Semantics in Netcentric Enterprise Architecture 26 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

• Constraints are represented as sequents.
§ Extend each infomorphism between ontologies (domain or

language) to a full logic infomorphism between local logics
• A logic infomorphism is an infomorphism whose type

mapping respects the constraints of the local logics.
o Knowledge surveying employed to survey language features

(represented as language concerns) in order to select an existing
language, choose components to extend an existing language or
compose a new one.

Roadmap for Semantics in Netcentric Enterprise Architecture 27 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Third Stage – Living, Liaising Hubs

Third Stage
 Definition Derivation Execution

W
h

at

Lift IF-
Classifications/Chu
Spaces to full
Institutions over two
phases.

Chu Transforms lifted
to Institution
Morphisms.

Phase I: Manage each
Institution natively but
"flatten" to a Chu
Space for processing
using infrastructure of
Stages 1 & 2

Phase II: Extend
infrastructure to
process Institutions
natively.

W
h

y

Explicitly incorporate
syntax into the
mathematical
representation and
mapping formalism.

Derive mappings
between arbitrarily
complex syntaxes.

Exploit infrastructure of
Stages 1 & 2 then
extend it.

R
e

su
lt

s

Modularization of syntax
and syntax mapping.

Composability of
language definition,
including syntax and
semantics.

Greater generality of
mapping and semantic
interoperability.

Earlier support for
complex syntaxes (far
beyond XML).

Enablement of self-
adaptive "living" hubs.

• Lifting of classifications to Institutions

o Chu Spaces and Chu Transforms are extended to become full-
fledged Institutions [Goguen06] and Institution Morphisms
(respectively), thus providing a framework for defining languages,
logics and ontologies via formal composition. [Schorlemmer05b],
[Kent2004], [Voutsadakis05], [Sernadas2005]
§ Local logics extended to become Institutions

• IF Classifications, local logics and Chu Spaces do not
formalize the relationship of their types and tokens to
the syntactic context with which they are articulated.

• An Institution (with regard to the Theory of
Institutions) extends the type/token classification
structure of Information Flow and Chu Spaces:

o An explicit set (alternatively a category), called
Sign (for signature), explicitly captures the

Roadmap for Semantics in Netcentric Enterprise Architecture 28 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

syntactic context of a classification. Note that
Sen can express syntactic elements of
arbitrarily complex structure.

o The set of types of a classification are lifted to
a set (or category) of sentences, called Sen,
expressed using the syntactic elements of Sign.

o The set of tokens of the classification are lifted
to a set (or category) of models, called Mod.

o The classification of tokens by types becomes a
satisfaction relation between models and
sentences as expressed in the syntactic
elements of Sign.

o Category theoretic functors map Sign to Sen
and Sign to Mod.

o An Institution therefore represents the truth
semantics of a logical system but in a fashion
where the syntax of the logical system is made
explicit.

o Acting between Institutions (as just described
above) are Institution Morphisms, the
Institutional analog of IF logic infomorphisms
and Chu Transforms.

o A key distinction between an Institution
Morphism and its less expressive analogs is
that an Institution Morphism can express the
mapping of truth semantics under change of
notation (syntax), as when moving (mapping)
from FOL to HOL or from OWL-DL to FOL.

• In Stage 3 we introduce a set of richly structured
signatures to support arbitrarily complex and relative
meta-relations and compartments for Powertypes and
other, as yet unanticipated domain semantics.

§ Logic Infomorphisms are extended to become Institution
Morphisms

o Galois-ified Institutions (parallels Institutional IFF LoT)
§ Just as in Stage 1 we form the Galois lattice over a merged

Chu Space (for language and domain theories) we may also
form the Galois lattice over an Institution or a merged
Institution (a merged Institution is a construct similar to a
merged Chu Space, a step along the path to obtaining an
Institution Morphism). We call this a Galois-ified Institution
and its vertices we call G-frames.

§ A G-frame is analogous to a formal concept in FCA (Formal
Concept Analysis) but may be obtained over arbitrary logics

Roadmap for Semantics in Netcentric Enterprise Architecture 29 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

(whereas FCA only works over FOL). Each G-frame
represents a Galois connection between a set of sentences
(from Sen) and a set of models (from Mod). Note: a Galois
connection is established when certain closure relations hold.

• Lifting may be accomplished in two phases
o Phase I – Define and manage an Institution using Institution-

specific data structures then pre-process each Institution to flatten
to a classification/Chu Space for reasoning using the infrastructure
developed during stages one and two of the roadmap.

o Phase II – Process and reason against native Institution(s), i.e.,
extend the infrastructure developed during stages one and two to
natively manage and process Institutions.

• Institutionalize the meta ontology of language concern dimensions (using
a single mathematical system to formalize it, i.e., a single meta language)
to support the definition and composition of languages/logics and
ontologies/models across a concern space of four dimensions.

• Define a category of theories as an enrichment of the LoT whereby the
LoT is a broad category (i.e., same set of objects) embedded in the
category of theories and an edge of the lattice may represent not only
inclusion but a more general morphism. Plus there may be additional
morphisms added between the vertices of the lattice.

o Define Institutional signature to represent linear stack, or spiral,
recursive construction to support an arbitrary number of roles, etc.;
even to support compartments for Powertypes

o For this relative meta-structure (with compartmented Powertypes)
as defined within the Institution's signature: preprocessing
"flattens" or "selects" only two adjacent meta regions (single
compartment) before submission to a DL reasoner.

• Upgrade the Institution's set of Sentences to a category of sentences
where morphisms between sentences constitute proofs, e.g., from these
sentences the morphisms, respecting associativity, derive a new sentence
(the conclusion) from the previous sentences (the premises).
[Mossakowski2005], [Pfenning91]

o Use the inference patterns to generate the free category which
includes the morphisms as proofs

o See Categorical Logic in [Mossakowski2005].
o The more general case is the Category of sets of sentences, e.g., to

support Infinitary logic with an infinite number of sentences.
• Explore, compare and contrast Galois-ified Institutions coupled with

Grothendieck flattening against fibered, Institutional IFF

Roadmap for Semantics in Netcentric Enterprise Architecture 30 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Roadmap for Semantics in Netcentric Enterprise Architecture 31 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Fourth Stage – Living, Liaising Languages
Destination: Knowledge culture supporting co-evolution and symbiosis

Fourth Stage
 Definition Derivation

W
h

at

Lifting of Institution to Charters and
Parchments

Model Theoretic Semantics is added as
a dimension of concern to the MDSOC
Institution supporting decomposing and
recomposing Model Theoretic Semantics
(brings total number of dimensions to
5).

Institutions are derived from
Charters and Parchments,
whereby a Parchment is used
to generate a Charter and in
turn an Institution.

W
h

y

Support for multiple meta-mathematics
- opening up single meta mathematics
(mathematical system of the
framework) to community of meta
mathematics that are interoperable with
translations (and senses of equivalence)
defined between them.

Greater generality and
flexibility for framework
implementers.

R
e

su
lt

s

Greater generality.

No reliance on a single, common meta
mathematics.

Community of interoperable
interoperation frameworks,
each of which has nearly
unlimited freedom of
implementation choices.

Potential test cases to use during development of Stage 4

• Add modal operators [(necessary, possible) | (always, sometimes)] with
propositional logic as base

o Need to define how modal operators combine with propositional
symbols

o E.g., Axiom says *always is not sometimes not*
o This is motivation for explicit operators to add, delete, rename, etc.

within the Institution.
• Enriching a certain negation construct in a logic requires a change in the

symbol used for negation.
o Use tilda (~) if it's not an involution and the standard square

negation bracket (¬) if it is involution.
o This can be enforced by a theory morphism, but can it be

expressed with only lattice inclusion for a sufficiently rich lattice
structure?

Roadmap for Semantics in Netcentric Enterprise Architecture 32 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Worked Example of First Stage Approach
The worked example is intended to serve several purposes:

• Demonstrate the applicability of several mathematical tools to the problem
of interoperability across distinct ontologies and languages within a
domain of interest to the readers of this paper.

• Provide accessibility to and understanding of these mathematical tools
sufficient to promote appreciation of their relevance, applicability and
power.

• Illustrate that such mathematical tools and approaches are not reserved
for researchers in ivory towers but rather may be gainfully employed
within contemporary software environments, e.g., XML, DBMS and
modeling and ontology languages.

It is beyond the scope of this paper to address all the details and complexities of
the specific problem we work in the example; indeed, doing so would elide the
very principles we wish to illuminate. Following the example we will outline some
of the details and complexities to be addressed in a proof of concept.

A note on terminology. Language developers use a variety of terms to designate
the types and tokens of their languages. The semantic web community uses the
term ontology to designate the classes and relations of their languages and the
term individuals to designate the tokens. The Object Management Group
employs the term model when referring to the classes and relations of UML and
MOF. And map refers to these same kinds of entities for the topic maps
community (and there are many more of such communities, each with their own
terminology). Hereinafter we will use the term theory to refer to ontologies,
models, maps and the like. Our justification for use of the term theory is that
ontologies, models, maps and the like are all systems of constraints,
equivalencies and implications over a universe of discourse; it has also been
shown that each of these may be represented as a theory in a suitable logic.
Furthermore, theories may be about anything; to avoid confusion we will
distinguish between a theory of a language, say of OWL-DL, versus a theory of a
domain, say of receivables accounting.

Worked Example part one – Language Map
1) Select two languages to map, a source and a target. For this example we

will use UML Class and OWL-DL.
2) Select a meta language: we use RDF for the example (more generally,

OWL-DL or OWL-FA).
3) Use the meta language to define the language constructs of the source

language. For this example we define an RDF theory of UML class
modeling.

Roadmap for Semantics in Netcentric Enterprise Architecture 33 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

a. The source language theory should include a number of language
instances. In this usage a language instance is a sign that
designates a concept of a domain entity or relationship, such as a
purchase order line item, a line item attribute, the relationships that
connect a line item with each of its attributes, etc.

First we assert that that UML class and attribute are "things" and represented as
RDFS classes. We also assert that a UML class "is related to" a UML attribute; we
represent "is related to" by defining an RDF property. For clarity we omit
namespaces in the RDF markup of our example.

<rdfs:Class rdf:about="UML_Class">
 <rdfs:subClassOf rdf:resource="thing"/>
</rdfs:Class>

<rdfs:Class rdf:about="UML_Attribute">
 <rdfs:subClassOf rdf:resource="thing"/>
</rdfs:Class>

<rdf:Property rdf:about="is related to">
 <rdfs:domain rdf:resource="UML_Class"/>
 <rdfs:range rdf:resource="UML_Attribute"/>
</rdf:Property>

Next we assert that certain domain concepts may be represented by UML class
and attribute constructs and assert what owns what.

<rdf:Description rdf:about="PO">
 <rdf:type rdf:resource="UML_Class"/>
</rdf:Description>

<rdf:Description rdf:about="POLineItem">
 <rdf:type rdf:resource="UML_Class"/>
</rdf:Description>

<rdf:Description rdf:about="POLineItem_Attribute">
 <rdf:type rdf:resource="UML_Attribute"/>
</rdf:Description>

<rdf:Statement>
 <rdf:subject rdf:resource="POLineItem"/>
 <rdf:predicate rdf:resource="is_related_to"/>
 <rdf:object rdf:resource="POLineItem_Attribute"/>
</rdf:Statement>

4) Use the meta language to define the language constructs of the target

language. For the example we create an RDF theory of OWL-DL; to
control scope we only model the class and property constructs of the
target language

Roadmap for Semantics in Netcentric Enterprise Architecture 34 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

a. The target language theory should include the same instances as
were used in defining the source language theory.

First we assert that OWL-DL class and property are things and are represented
by RDFS classes. We also assert that one OWL-DL class is related to another
OWL-DL class by an OWL-DL property; we represent "is related to" by defining
an RDF property.

<rdfs:Class rdf:about="OWL-DL_Class">
 <rdfs:subClassOf rdf:resource="thing"/>
</rdfs:Class>

<rdfs:Class rdf:about="OWL-DL_Property">
 <rdfs:subClassOf rdf:resource="thing"/>
</rdfs:Class>

<rdf:Property rdf:about="is_related_to">
 <rdfs:domain rdf:resource="OWL-DL_Class"/>
 <rdfs:range rdf:resource="OWL-DL_Class"/>
</rdf:Property>

Next we assert that certain domain concepts (the common instances of this part
of the example) may be represented by OWL-DL classes and what is related to
what.

<rdf:Description rdf:about="PO">
 <rdf:type rdf:resource="OWL-DL_Class"/>
</rdf:Description>

<rdf:Description rdf:about="POLineItem">
 <rdf:type rdf:resource="OWL-DL_Class"/>
</rdf:Description>

<rdf:Description rdf:about="POLineItem_Attribute">
 <rdf:type rdf:resource="OWL-DL_Class"/>
</rdf:Description>

<rdf:Statement>
 <rdf:subject rdf:resource="POLineItem"/>
 <rdf:predicate rdf:resource="is_related_to"/>
 <rdf:object rdf:resource="POLineItem_Attribute"/>
</rdf:Statement>

5) Define a relational schema for the meta language. The relational schema

will be used to manage and manipulate RDF theories, i.e., actual ontology
classes, properties and ontology instances. Oracle 10gR2 includes a
schema for RDF ontologies within Oracle Spatial; for the mapping process
we can use the Oracle schema for RDF.

6) Load the RDF theories of source and target languages into the RDBMS
using the relational schema for RDF.

Roadmap for Semantics in Netcentric Enterprise Architecture 35 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

7) Interim summary: At this point in the process we have two languages
defined using a common meta language that "classifies" common
instances.

8) For the purpose of the language mapping we treat as types the constructs
of source and target languages and as tokens the common instances. For
this example the class and attribute constructs of UML and the class and
property constructs of OWL-DL constitute types. The name of source and
target types are "indexed" as needed to guarantee uniqueness and
prevent name collisions, e.g., UML_Class for UML class and OWL-DL_Class
for OWL-DL class rather than simply "Class" for each (which would indeed
cause a collision).

9) Each language's types and tokens, plus its relationship between its types
and tokens, constitutes a classification (in the vernacular of Barwise and
Seligman's Information Flow). A classification captures the semantics of
the language to an extent determined by the set of known tokens; new,
previously unseen tokens may change the semantics (the semantics of a
classification is not omniscient).

10) We represent each classification (source and target) as a separate Chu
Space, a tabular structure of rows and columns. Tokens are represented
as rows while types are represented as columns. The intersection of a row
and a column is set to equal "1" if that token is of that type and is set to
equal "0" otherwise.

Source Chu Space UML_Class UML_Attribute U_is_related_to
PO 1 0 0
POLineItem 1 0 0
POLineItem_Attribute 0 1 0
POLineItem
is_related_to
POLineItem_Attribute

0 0 1

Target Chu Space OWL-

DL_Class
OWL-
DL_Property

O_is_related_to

PO 1 0 0
POLineItem 1 0 0
POLineItem_Attribute 1 0 0
POLineItem
is_related_to
POLineItem_Attribute

0 1 1

11) We merge the source and target Chu Spaces, thus representing a merged

classification. The number of rows of the merged Chu Space is equal to
the number of rows of the source Chu Space (and also equal to the
number of rows of the target Chu Space) since the tokens are common

Roadmap for Semantics in Netcentric Enterprise Architecture 36 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

between the two Chu Spaces. The number of columns is equal to the sum
of the number of columns of source plus target Chu Spaces as the types
are, a priori, distinct.

Merged Chu Space UML_

Class
UML_
Attribute

U_is_
related_to

OWL-DL_
Class

OWL-DL_
Property

O_is_
related_to

PO 1 0 0 1 0 0
POLineItem 1 0 0 1 0 0
POLineItem_Attribute 0 1 0 1 0 0
POLineItem is related to
POLineItem_Attribute

0 0 1 0 1 1

12) Form the Galois lattice over the merged Chu Space.

a. The Galois lattice is a concept lattice; its vertices represent formal
concepts over the merged Chu Spaces.

b. Each formal concept represents a Galois connection between the
formal concept's intent (set of types) and the formal concept's
extent (the set of tokens).

c. The Galois lattice represents the "global" classification over the
Information Flow channel defined by the infomorphism between
the two "local" (source and target) classifications.

d. The vertices of the Galois lattice are therefore the types of the
global classification.

e. The set of types that constitute each formal concept's intent
represent the language constructs that are merged by the language
mapping as based on the classification of common tokens
according to source and target types.

Note: We carry on the following operations using a relational schema for
representing and processing Galois lattices over Chu Spaces. The schema
employs three relations: A master relation represents each lattice vertex as a
tuple; a detail relation represents each type (Chu column entity) as a tuple; and
another detail relation represents each token (Chu row entity) as a tuple. We do
not show these embodiment details here but do show the functional effect.

To form the Galois lattice from the merged Chu Space we first merge identical
columns, i.e., columns that have the same values in every row.

Source Chu Space UML_Class UML_Attribute U_is_related_to

OWL-DL_Property
O_is_related_to

OWL-DL_Class

PO 1 0 0 1
POLineItem 1 0 0 1
POLineItem_Attribute 0 1 0 1
POLineItem is related to
POLineItem_Attribute

0 0 1 0

Roadmap for Semantics in Netcentric Enterprise Architecture 37 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Next we merge identical rows, i.e., rows that have the same value in every
column.

Source Chu Space UML_Class UML_Attribute U_is_related_to

OWL-DL_Property
O_is_related_to

OWL-DL_Class

PO
POLineItem

1 0 0 1

POLineItem_Attribute 0 1 0 1
POLineItem is related to
POLineItem_Attribute

0 0 1 0

Then we order the columns from left to right in descending order by total
number of 1's (arithmetic, not logical sum).

Source Chu Space OWL-DL_Class UML_Class UML_Attribute U_is_related_to

OWL-DL_Property
O_is_related_to

PO
POLineItem

1 1 0 0

POLineItem_Attribute 1 0 1 0
POLineItem is related to
POLineItem_Attribute

0 0 0 1

Not counting the top and bottom vertices we have four vertices in the Galois
lattice over the merged Chu Space, one for each column. The Hasse diagram for
the lattice is illustrated in the figure below.

Roadmap for Semantics in Netcentric Enterprise Architecture 38 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Hasse diagram of the Galois lattice
over the merged Chu Space

I

OWL-DL_Class

OWL-DL_Property
U_is_related_to
O_is_related_to

UML_Class UML_Attribute

F

POLineItem
is_related_to

POLineItem_Attribute

POLineItem_Attribute

PO

POLineItem

POLineItem_Attribute

PO

POLineItem

13) Recover the type map (one half of the IF infomorphism) from the intent
of the formal concepts of the Galois lattice. This type map is the language
map.

We use the name CLTup to represent the portion of the Chu Language Transform
that acts on types, mapping types of the source to types of the target.

Language Map

CLTup : UML_Class à OWL-DL_Class

CLTup : UML_Attribute à OWL-DL_Class

CLTup : U_is_related_to(UML_Class, UML_Attribute) à O_related_to(OWL-
DL_Class, OWL-DL_Class) {where type(O_related_to) = OWL-DL_Property

We may now represent this mapping for arbitrary tokens of source and target
types (as contrasted with the common instances we employed to derive the

Roadmap for Semantics in Netcentric Enterprise Architecture 39 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

mapping). We first generalize the tokens in each of the source and target Chu
Spaces.

Generalized source Chu Space for UML class UML_Class UML_Attribute owns
S1, i.e., a UML class 1 0 0
S2, i.e., a UML attribute 0 1 0
S3, i.e., the owning of a UML attribute by a UML class 0 0 1

Generalized target Chu Space for OWL-DL class & property OWL-DL_Class OWL-DL_Property
T1, i.e., an OWL-DL ontology class 1 0
T2, i.e., an OWL-DL property 0 1

Next we represent the Chu Transform (that acts between the source and target
spaces) as a Chu Space. We do this by classifying the tokens of the source
according to the types of the target. However, to accomplish this without
ambiguity the source Chu Space must be extensional, i.e., no duplicate rows,
and the target must be separable, i.e., no duplicate columns.

Generalized Chu Transform UML to OWL-DL
(as Chu Space)

OWL-DL_Class OWL-DL_Property

S1, i.e., a UML class 1 0
S2, i.e., a UML attribute 1 0
S3, i.e., the owning of a UML attribute by a UML class 0 1

We can recover the language type map, CLTup , from this Chu Transform as Chu
Space (TS, or Transform Space, for short) as follows. For each token of the
source, say S1, we find it in the TS and identify which columns have equal values.
For S1 UML_Class in the source space has equivalent values to OWL-DL_Class in
the TS; hence the transform takes UML_Class into OWL-DL_Class. The procedure
is repeated for the remaining source tokens, S2 and S3, resulting in transforming
UML_Attribute into OWL-DL_Class and the owning of a UML_Attribute by a
UML_Class into an OWL-DL_Property.

Note: In general, given an extensional source space, a separable target space
and a Chu Transform represented as a Chu Space itself, it is also possible to
recover the contravariant map, i.e., how tokens of the target map back to tokens
of the source. Were we to do this here, in this particular example, we'd find
there are two possible ways in which a specific OWL-DL class can be mapped to
a specific UML construct: it can be mapped to a specific UML class or a specific
UML attribute, with an OWL-DL property mapping to an owing relationship
between a specific UML class and a specific UML attribute. To make this
functional, i.e., resolve the choice, we would need to consider a wider array of
tokens, consider additional UML language constructs as types (e.g., association)
and potentially narrow the target from OWL-DL to OWL-DL using one or more
specific language idioms, i.e., design patterns for language usage.

Roadmap for Semantics in Netcentric Enterprise Architecture 40 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Worked Example part two – Domain Map
1) The domain mapping process recapitulates the very same process used

for language mapping but does so applied to domain types and tokens
within the context of the language map. This last notion is central and
critical.

2) Select a source domain theory and a target domain theory; these must be
expressed in a language pair for which a language map has already been
derived. Of course the source and target domain theories may be
expressed in the same language, in which case an identity map exists
between the source and target languages. For our example we choose
constructs from the domain of accounting, specifically purchase orders
line items, expressed in UML Class for the source and a different
conception of purchase orders line items for the target, expressed in
OWL-DL. For the former we employ RosettaNet's Open Buying on Internet
(OBI) community semantics; for the latter we use the Universal Business
Language (UBL).

UML class model of RosettaNet OBI
(Open Buying on Internet) Order Item

OBI Order Item

PO101 Assigned Identifier
PO107 Product/ServiceID
PO104 Unit Price
PO102 Quantity Ordered

Roadmap for Semantics in Netcentric Enterprise Architecture 41 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

OWL-DL ontology of UBL (Universal
Business Language) Order Line Item

UBL Order Line Item

BuyersID

ID

Description

Quantity

PriceAmount

LineExtensionAmount

has_element

3) Source and target domain theories should possess common instances;
here "instance" means a sign for a thing or concrete relationship in the
domain of discourse. Common instances will comprise the tokens of the
source and target domain classifications. For our example here we work
with just a single purchase order line item instance; conventionally there
would be many common instances.

UML instance of RosettaNet OBI (Open
Buying on Internet) Order Item

PO1138_1 : OBI Order Item

PO101 Assigned Identifier = Cust_123
PO107 Product/ServiceID = SKU_abc
PO104 Unit Price = $10
PO102 Quantity Ordered = 5 units

Roadmap for Semantics in Netcentric Enterprise Architecture 42 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Common instances of UBL Order Line
Item expressed with OWL-DL

Note: To simplify the markup for this example all properties are represented as
object properties; "production" markup would also employ OWL-DL data type
properties, e.g., to represent values for quantity and price amount.

<rdf:Description rdf:about="PO1138_1">
<rdf:type rdf:resource="UBL_Order_Line_Item"/>

</rdf:Description>

<rdf:Description rdf:about="Cust_123">

<rdf:type rdf:resource="BuyersID"/>
</rdf:Description>

<rdf:Description rdf:about="SKU_abc">

<rdf:type rdf:resource="ID"/>
</rdf:Description>

<rdf:Description rdf:about="$10">

<rdf:type rdf:resource="Quantity"/>
</rdf:Description>

<rdf:Description rdf:about="5 units">

<rdf:type rdf:resource="PriceAmount"/>
</rdf:Description>

<UBLOrder_Line_Item rdf:about="PO1138_1>
 <has_element rdf:about="Cust_123"/>
 <has_element rdf:about="SKU_abc"/>
 <has_element rdf:about="$10"/>
 <has_element rdf:about="5 units"/>
</UBLOrder_Line_Item>

4) Partition the domain map into component maps according to the types of

the global classification (as represented by the vertices of the Galois
lattice formed over the merged language Chu Space – see Worked
Example part one – Language Map). Each "global" type constitutes a
shared language construct across the two languages; it is within each
global type that we will map the two domain theories and their instances,
global type by global type. The complete domain map is comprised of all
the component maps taken together.

a. The language map takes UML classes and attributes into OWL-DL
class. Therefore one of the global types on the language level is
class-attribute/class; it is the first component of the domain map.

b. The language map takes ownership of UML attributes by UML
classes into OWL-DL properties. Therefore the other global type on

Roadmap for Semantics in Netcentric Enterprise Architecture 43 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

the language level is ownership/property; it is the second
component of the domain map.

5) To derive each domain component map we will derive a pair of
classifications, one for the source domain and one for the target domain.
For our example we will derive two such maps and therefore four
classifications:

a. A pair of domain classifications for the global language type class-
attribute/class; we'll call this the class-attr/class component of the
domain map.

b. A pair of domain classifications for the global language type
ownership/property; we'll call this the owns/property component of
the domain map.

6) Define a relational schema for the source and target languages.
a. We assume both source and target languages possess an XML

serialization supported by an XML Schema Definition (XSD), which
in the year 2006 is a reasonable assumption.

b. Mainstream relational database management systems provide
direct support for loading XML data into the RDBMS as well as
serializing relational data as XML. Our example is based on the
capabilities of Oracle 10gR2 which can register an arbitrary XSD
and use it to create an object-relational schema within the Oracle
RDBMS to manage and manipulate XML data that conforms to the
registered XSD.

i. We register the XSD for UML/XMI into Oracle, thus
generating an object-relational schema to parse and manage
UML models within the Oracle RDBMS.

ii. We register the XSD for OWL-DL into Oracle, thus
generating an object-relational schema to parse and manage
OWL-DL ontologies within the Oracle RDBMS.

7) Load the source and target domain theories into the Oracle RDBMS.
a. Slight modifications of headers in the UML XMI and OWL-DL XML

may be required, e.g., to point to the schema that was previously
registered and thus the object-relational schema that the XML data
will be loaded into.

b. Load the XMI file for the UML model into Oracle.
c. Load the XML file for the OWL-DL ontology into Oracle.

8) Interim summary and look ahead: We may now use SQL to define
relational joins by which each global language type (from the relationally
embodied Galois lattice of part one) is employed to join the merged
source and target language constructs with their respective domain theory
class-attr/class or owns/properties and domain instances. We use these
SQL statements in the next step to derive our four domain classifications.

Roadmap for Semantics in Netcentric Enterprise Architecture 44 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

9) Derive the four domain classifications as Chu Spaces from their respective
domain theory. The name of source and target types are indexed as
needed to prevent name collisions.

a. For the class-attr/class component of the domain map we derive:
i. A Chu Space (classification) of common domain instances as

tokens according to UML classes and attributes in the source
domain model.

ii. A Chu Space (classification) of common domain instances as
tokens according to OWL-DL classes in the target domain
ontology.

Chu Space
of UML
classes &
attributes

OBI
Order
Item

PO101Assigned
Identifier

PO107 Product/
ServiceID

PO104
Unit Price

PO102
Quantity
Ordered

PO1138_1 1 0 0 0 0
Cust_123 0 1 0 0 0
SKU_abc 0 0 1 0 0
$10 0 0 0 1 0
5 units 0 0 0 0 1

Chu Space of
OWL-DL
classes

UBL
Order
Line
Item

BuyersID ID Description Price
Amount

Quantity Line
Extension
Amount

PO1138_1 1 0 0 0 0 0 0
Cust_123 0 1 0 0 0 0 0
SKU_abc 0 0 1 0 0 0 0
$10 0 0 0 0 1 0 0
5 units 0 0 0 0 0 1 0

b. For the owns/property component of the domain map we derive:
i. A Chu Space (classification) of common domain relationship

instances as tokens according to the UML class ownership of
UML attributes of the source domain model.

ii. A Chu Space (classification) of common domain relationship
instances as tokens according to the OWL-DL properties of
the target domain ontology.

Chu Space of UML class –attribute relations owns
(PO1138_1, Cust_123) 1
(PO1138_1, SKU_abc) 1
(PO1138_1, $10) 1
(PO1138_1, 5 units) 1

Roadmap for Semantics in Netcentric Enterprise Architecture 45 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Chu Space of OWL-DL property instances has_element
(PO1138_1, Cust_123) 1
(PO1138_1, SKU_abc) 1
(PO1138_1, $10) 1
(PO1138_1, 5 units) 1

10) Form the merged Chu Space across the domain Chu Space pairs.
a. Merge the Chu Space pair for the class-attr/class component of the

domain map.
b. Merge the Chu Space pair for the owner/property component of the

domain map.
c. Types for which there are no tokens are dropped from the space.

Merged
Class-
attr/class
Chu
Space

OBI
Order
Item

PO101
Assigned
Identifier

PO107
Product/
ServiceID

PO104
Unit
Price

PO102
Quantity
Ordered

UBL
Order
Line
Item

BuyersID ID Price
Amount

Quantity

PO1138_1 1 0 0 0 0 1 0 0 0 0
Cust_123 0 1 0 0 0 0 1 0 0 0
SKU_abc 0 0 1 0 0 0 0 1 0 0
$10 0 0 0 1 0 0 0 0 1 0
5 units 0 0 0 0 1 0 0 0 0 1

Merged owns/property Chu Space owns has_element
(PO1138_1, Cust_123) 1 1
(PO1138_1, SKU_abc) 1 1
(PO1138_1, $10) 1 1
(PO1138_1, 5 units) 1 1

11) Form the Galois lattice over each merged Chu Space.

a. Each vertex of the Galois lattice over the merged class-attr/class
Chu Space is a formal concept whose intent is the set of domain
classes to be merged and whose extent is the set of domain
instances of the merged class. We will call this the Class-Attribute
lattice.

b. Each vertex of the Galois lattice over the merged owns/property
Chu Space is a formal concept whose intent is the set of domain
properties or attributes to be merged and whose extent is the set
of domain relations of the merged owns/property. We will call this
the Relation lattice.

Roadmap for Semantics in Netcentric Enterprise Architecture 46 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

F

I

OBI Order Item

UBL Order Line Item

PO104 Unit Price

Price Amount

PO107 Product/
ServiceID

ID

PO101 Assigned
Identifier

BuyersId

PO102 Quantity
Ordered

Quantity

Class-Attribute Lattice

Relation Lattice

F

owns
has_element

I

Roadmap for Semantics in Netcentric Enterprise Architecture 47 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

12) Recover the type maps (one half of the IF infomorphism) from the intent
of the formal concepts of each Galois lattice (class and relation). These
type maps together are the domain map. For the example we have:

a. A map between specific UML classes and specific OWL-DL classes.
b. A map between specific UML attributes and specific OWL-DL

properties.

We use the name CDTup to represent the portion of the Chu Domain Transform
that acts on types, mapping types of the source domain to types of the target
domain.

Domain Map

CDTup : OBI Order Item à UBL Order Line Item
CDTup : PO101Assigned Identifier à BuyersID
CDTup : PO107 Product/ServiceID à ID
CDTup : PO102 Quantity Ordered à Quantity
CDTup : PO104 Unit Price à PriceAmount

CDTup : owns à has_element
Note: As we saw in performing the language map (in part one) we may
represent each component of the domain map as a Chu Transform as Chu Space.
We leave this as a straightforward exercise for the motivated reader.

Applied together the language + domain maps may now be used to:

• Transform UML class models into OWL-DL ontologies for management
in a semantic web repository, to post on the web, visualize with an
ontology editing tool (e.g., Protégé), as content for a web page,
semantic markup of a web service, or for input to a reasoning engine.

• Transform OWL-DL ontologies into UML class models for management
in a MOF repository, visualization and editing in a UML tool, or to apply
within a model driven architecture effort.

Specific details and complexities not addressed in this example but fully
amenable to the approach include:

• UML associations
• UML association cardinality constraits
• UML association navigability
• OWL property > UML association
• OWL property with cardinality constraint < UML association with

cardinality = 1
• Pair of OWL properties with inverseof < UML association (undirected)
• OWL property domain/range <> UML association end
• …

Roadmap for Semantics in Netcentric Enterprise Architecture 48 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

This worked example focused on the mapping of distinct ontologies expressed in
distinct languages, as depicted in the figure below.

However the approach has much more general applicability. For example, the
same methods may also be used to map schemas/models to the ontologies that
semantically ground them, to map such schemas/models to each other across
distinct users, systems and communities, and in the final analysis, to transform
and migrate data represented by such schemas and models, as depicted in the
next figure.

Roadmap for Semantics in Netcentric Enterprise Architecture 49 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

The method may also be applied to hub and spoke architectures as depicted next.

Roadmap for Semantics in Netcentric Enterprise Architecture 50 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Next Steps: beginning the adventure

With roadmap in hand its time to begin the journey. As it takes time to prepare
ground and lay down road surface, we advocate starting with two activities in
parallel; one to get moving and produce useful results, the other to prepare for
the next stage.

• First Stage - Proof of Concept
– Run real mapping examples in RDBMS using SURVEYOR

and advanced maths
• Second Stage - R&D

– Collaborative, progressive ontology mapping using
SURVEYOR and Web 2.0 technologies

• Communities of ontologies; emergent “consensus”
semantics

– Ontology of language concern dimensions as meta
ontology to Semantic Core

• Composable languages

Roadmap for Semantics in Netcentric Enterprise Architecture 51 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

References
[Barwise97] John Barwise and Jerry Seligman. Information Flow. Cambridge

University Press. 1997
[Brodnik91] Andrej Brodnik and Hemin Xiao. Typing in Object Oriented Database

Systems . http://www.cs.uwaterloo.ca/research/tr/1991/46/types.pdf
[Cardelli87] Luca Cardelli. Structural Subtyping and the Notion of Power Type.

In Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages. 1987. Available at:
http://research.microsoft.com/Users/luca/Papers/StructuralSubtyping.pdf

[Casanave 2006] Cory Casanave, Semantic Core in Open Source E-
government Reference Architecture (OSERA)

Semantic Core Open Source Enterprise Reference Architecture,
http://colab.cim3.net/file/work/Expedition_Workshop/2006_01_
24_BootstrappingSOAthroughCOIs/Casanave_OsEra_2006_01_2
4.ppt

Semantic Core http://www.semanticcore.org/
[Goguen06] Joseph Goguen. Information Integration in Institutions. University

of California at San Diego. Dept of Computer Science and Engineering. To
appear in Jon Barwise Memorial Volume edited by Larry Moss,
Indiana University Press, 2006.
http://www.cs.ucsd.edu/~goguen/pps/ifi04.pdf

[Grau04] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin,
Aditya Kalyanpur. Modularizing OWL Ontologies. 2004.
http://www.mindswap.org/2004/multipleOnt/papers/modularFinal.pdf

[Grau05] Bernardo Cuenca Grau. Combination and Integration of Ontologies
on the Semantic Web. July 6, 2005.
http://www.mindswap.org/2004/multipleOnt/papers/Dissertation.pdf

[Horrocks01] Jeff Z. Pan, and Ian Horrocks. Metamodeling Architecture of Web
Ontology Languages. In Proceedings of the First Semantic Web
Working Symposium (SWWS'01), Stanford, July 2001.
http://www.cs.man.ac.uk/~horrocks/Publications/download/2001/rdfsfa.p
df

[Horrocks03] Jeff Z. Pan, and Ian Horrocks. RDFS(FA) and RDF MT: Two
Semantics for RDFS. Jeff Z. Pan and Ian Horrocks Department of
Computer Science, University of Manchester, UK. 2003.
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/PaHo03
b.pdf

[Horrocks05] Jeff Z. Pan, and Ian Horrocks. OWL FA: A Metamodeling Extension
of OWL DL. In Proc. of the International workshop on OWL: Experience
and Directions (OWL-ED2005). 2005.
http://www.mindswap.org/2005/OWLWorkshop/sub15.pdf

[Kalfoglou05] Yannis Kalfoglou and Marco Schorlemmer. IF-Map: An Ontology-
Mapping Method based on Information-Flow Theory. In
Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems. The Netherlands. 2005 ACM. Also
available at: http://www.iiia.csic.es/~marco/ifmap.pdf

Roadmap for Semantics in Netcentric Enterprise Architecture 52 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

[Kent2004] Lifting Information Flow to Institutions. SUO IEE 2004.
http://suo.ieee.org/IFF/metalevel/lower/metatheory/synthesis/version200
40909.html

[Melnik2000] A Layered Approach to Information Modeling and Interoperability on the
Sergey Melnik and Stefan Decker. A Layered Approach to
Information Modeling and Interoperability on the Web Sept. 2004
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=20
00-30&format=pdf&compression=&name=2000-30.pdf

[Motik05] Boris Motik. On the Properties of Metamodeling in OWL. FZI
Research Center for Information Technologies at the University of
Karlsruhe. Springer-Verlag 2005.
http://dip.semanticweb.org/documents/Boris-Motik-On-the-Properties-of-
Metamodeling-in-OWL.pdf

[Mossakowski2005] Till Mossakowski, Florian Rabe, Valeria De Paiva, Lutz Schroder and
Joseph Goguen. An Institutional View on Categorical Logic and the
Curry-Howard-Tait-Isomorphism 2005
http://www.tzi.de/~till/papers/CurryHoward.pdf

[O’Reilly05] Tim O’Reilly. What is Web 2.0. Design Patterns and Business
Models for the Next Generation of Software. Published online by
O’Reilley. 09/30/2005
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html

[Pan2003] Jeff Z. Pan and Ian Horrocks. RDFS(FA): A DL-ised Sub-language of
RDFS. 2003
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/PaHo03
c.pdf

[Pfenning91]

Frank Pfenning. Logic programming in the LF logical framework. In
Gerard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149-
-181. Cambridge University Press, 1991.
http://citeseer.ist.psu.edu/cache/papers/cs/7350/http:zSzzSzwww.cs.cmu
.eduzSzafszSzcszSzuserzSzfpzSzpubliczSzelf-
paperszSzlfproc91.pdf/pfenning91logic.pdf

[Pratt05a] Chu Spaces published online at http://chu.stanford.edu
[Pratt05b]

Vaughan Pratt. Attributes as dual types: a unification of
presheaves and Chu spaces. Stanford University. February 25, 2005.
http://boole.stanford.edu/pub/aadt.pdf.

[Pratt99]

Vaughan Pratt. Chu Spaces: Notes for the School on Category
Theory and Applications. Stanford University. July 13-17, 1999.
http://chu.stanford.edu/guide.html#coimbra

[Priss05] Uta Priss. Establishing Connections between FCA and Relational
Databases. School of Computing Napier Univ. Edinberg, UK.
http://www.upriss.org.uk/papers/iccs05.pdf

[Schorlemmer05a] Marco Schorlemmer and Yannis Kalfoglou. Progressive Ontology
Alignment for Meaning Coordination: An Information Theoretic
Foundation. Presented at AAMAS’05, July 25-29,
2005, Utrecht, Netherlands.

[Schorlemmer05b] Marco Schorlemmer and Yannis Kalfoglou. A General Theory of
Semantic Integration. Submitted to Elsevier Science, November 2005.

[Sernadas2005] Website of Amilcar Sernadas at Technical University of Lisbon, Portugal.
Extensive work on combining logics, including using Theory of
Institutions. In particular see FibLog, LogComp and ACL.
http://www.cs.math.ist.utl.pt/cs/acs.html

Roadmap for Semantics in Netcentric Enterprise Architecture 53 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

[Stumme01] Gerd Stumme and Alexander Maedche. FCA-Merge: Bottom-Up
Merging of Ontologies. In Proc. 17th Intl. Conf. on Artificial Intelligence
(IJCAI '01), Seattle, WA, USA, pp. 225-230. 2001. http://www.aifb.uni-
karlsruhe.de/Publikationen/showPublikation?publ_id=483

[Von Schweber
1998a]

Erick Von Schweber. SQL3D Café. 1998
http://www.infomaniacs.com/SQL3D/SQL3D-Cafe.htm

[Von Schweber
1998b]

Erick Von Schweber. Escape from VRML Island. 1998
http://www.infomaniacs.com/SQL3D/SQL3D-Escape-From-VRML-
Island.htm

[Von Schweber
1998c]

E. Von Schweber and L. Von Schweber. “Computing’s Next Wave” Oct 26,
1998. PCWeek (now EWeek)
http://www.infomaniacs.com/ComputingFabrics/InfomaniacsComputingFa
brics.htm

[Von Schweber
2004]

Erick Von Schweber and Linda Von Schweber. Neological SURVEYOR
2004. www.neological.com

[Voutsadakis05]

George Voutsadakis. Remarks on Classifications and Adjunctions
School of Mathematics and Computer Science. Lake Superior State
University. February 2, 2005. http://math.unipa.it/~circmat/vout.pdf

[Wigetman06] Robert Wigetman and Jurgen Moortgat. Know Your UML with XML.
Oracle Magazine. January/February 2006 (Pg 67=70)
http://www.oracle.com/technology/oramag/oracle/06-jan/o16xml.html

[Wille96] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis –
Mathematical Foundations. Springer. 1996

 Appendix I – Information Flow (IF)

Roadmap for Semantics in Netcentric Enterprise Architecture 54 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Appendices

Appendix I - Information Flow (IF) proto-primer

The coinage of IF consists of tokens and types, but these constructs are
sometimes used in an unconventional manner. Unlike many logical systems, IF
applications can (and periodically do) treat a class-like thing as a token and an
instance-like thing as a type. That can lead to confusion on initial encounters with
IF.

IF emphasizes two key relationships amongst tokens and types. One is
classification of a token by a type, e.g., the token Lassie is classified as of type
Collie. The other relationship is consequence between types, e.g., type Dog is a
consequence of type Collie in that any token that is classified of type Collie must
necessarily be classified of type Dog.

IF packages these two key relationships together into a local logic, defined by 1)
a set of tokens, 2) a set of types, 3) a classification relation between tokens and
types, and 4) the smallest, closed set of constraints on consequence relations
(called a local theory, and, with a bit more constraint, a regular theory).

A consequence relation of a local theory in IF is typically represented by a
sequent. A sequent is written as a comma-delimited string of types that comprise
the left hand side of the sequent, a symbol for the consequence relation (+), and
another comma-delimited string of types that comprise the right hand side.
Here’s an example of a sequent: car, convertible + vehicle, muffin. A sequent is
“read” in the following way: a token that is of type car AND also of type
convertible is by consequence a token of type vehicle OR a token of type muffin.
Commas on the left hand side are to be read as AND (conjunctively) while
commas on the right hand side are to be read as OR (disjunctively) .

The key concept of IF is an infomorphism, a pair of maps (functions) that enable
information flow between two distinct local logics (I’ll refer to these local logics as
L1 and L2). One of the maps takes types of L1 into types of L2; the other map
takes tokens of L2 into tokens of L1 (the two functions are contravariant as they
work in opposite directions). Critically and centrally, these two maps, along with
each local logic’s classification rela tion, must fulfill a special contract.

Imagine a rectangle: L1 is on the left side and L2 on the right; types
occupy the upper vertices and tokens the lower (so the types of L1
are in the upper left while the tokens of L2 are in the lower right).
The left (and respectively right) edges represent the classification
relations of L1 (and L2 respectively) while the top edge is the type
map from L1 to L2 while the bottom edge is the token map from L2
to L1. The two maps – the type map and the token map - must be

 Appendix I – Information Flow (IF)

Roadmap for Semantics in Netcentric Enterprise Architecture 55 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

adjoint (in order for the pair of functions to be an infomorphism).
One path starts in the lower right, from a token tok2 of L2, the token
map is applied to it moving up horizontally to the left, taking it to a
token tok1 of L1. L1’s classification relation then moves us vertically,
telling us that tok1 is classified as one of L1’s types, call it typ1.
That’s one path. The other path says that if you start with typ1 in
the upper left hand corner of the rectangular diagram, apply the
type map to move horizontally to the right, you end up at one of
L2’s types, we’ll call it typ2. For the pair of functions to be adjoint
the token we originally started with, namely tok2, must be classified
as of type typ2 (moving vertically up the right hand edge).

When you put it all together the infomorphism simply says that the two maps
respect each local logic’s classification of tokens by types; that’s the central tenet
of IF. Because each local logic’s classification of tokens by types constitutes that
local logic’s semantics, the infomorphism is, in short, a mapping between local
semantics that respects each local semantics.

IF also extends the idea of infomorphism into what it calls a logic infomorphism :
adding to an infomorphism a constraint that the infomorphism must respect each
local logic’s local theory, e.g., when you apply the type map to the types involved
in a consequence relation that holds in L1 the resulting consequence relation
must hold in L2. A simple example of this in the context of natural language is
that if in English any token of type Siamese is by consequence a token of type
cat then under the type map that takes Siamese to Siamois and cat to chat then
any token of type Siamois must by consequence be of type chat.

That a local logic includes both a classification of tokens by types plus a local
theory (consequence relations) means that IF ties together the two traditional
ways of defining semantics: model theoretic semantics and axiomatic semantics
and a logic infomorphism constitutes a semantic mapping that respects both.

See [Barwise97].

 Appendix III – Chu Spaces

Roadmap for Semantics in Netcentric Enterprise Architecture 56 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Appendix II – Representing Chu Transforms as
Chu Spaces
Text by Erick Von Schweber and Vaughan Pratt (from private communication Dec.
2005). Example by Erick Von Schweber.

A Chu transform (f,f'):(A,r,X)->(B,s,Y) is standardly representable as a Chu space
if and only if A is extensional and B is separable (T_0).

The Chu space standardly representing (f,f') is (A,t,Y) where t(a,y) = r(a,f'(y))
(= s(f(a),y) by adjointness of (f,f')).

Chu Space Chu Transform as Chu
Space

Chu Space

(A,r,X) (A,t,Y) (B,s,Y)
 x1 x2
a1 1 0
a2 0 1

 y1 y2
a1 1 0
a2 0 1

 y1 y2
b1 0 1
b2 1 0

Extensional, i.e., no
duplicate rows

 Separable, i.e., no
duplicate columns

For the Chu Transform defined by the adjoint pair of functions f,f' where f: A->B
and f': Y->X as:
f(a1) = b2 f(a2) = b1 f'(y1) = x1 f'(y2) = x2
then s(f(a),y) = r(a,f'(y)) for all a in A and y in Y.

For Y = {y1, y2} and A = {a1, a2} we have:
s(f(a1), y1) = r(a1, f'(y1)) => s(b2,y1) = r(a1,x1) => 1 = 1
s(f(a2), y1) = r(a2, f'(y1)) => s(b1, y1) = r(a2, x1) => 0 = 0
s(f(a1), y2) = r(a1, f'(y2)) => s(b2, y2) = r(a1, x2) => 0 = 0
s(f(a2), y2) = r(a2, f'(y2)) => s(b1, y2) = r(a2, x2) => 1 = 1

Now, t(a,y) = r(a,f'(y)) = s(f(a),y) for all a in A and y in Y, thus yielding:
t(a1, y1) = r(a1,f'(y1)) = s(f(a1),y1) => t(a1,y1) = r(a1,x1) = s(b2,y1) => 1 =
1 = 1
t(a1, y2) = r(a1,f'(y2)) = s(f(a1),y2) => t(a1, y2) = r(a1,x2) = s(b2, y2) => 0 =
0 = 0
t(a2, y1) = r(a2,f'(y1)) = s(f(a2),y1) = t(a2, y1) = r(a2, x1) = s(b1,y1) => 0 =
0 = 0
t(a2, y2) = r(a2,f'(y2)) = s(f(a2), y2) => t(a2, y2) = r(a2, x2) = s(b1, y2) => 1
= 1 = 1

f is recovered from (A,t,Y) as the unique f:A->B such that

 Appendix III – Chu Spaces

Roadmap for Semantics in Netcentric Enterprise Architecture 57 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

for each a in A, f(a) = b_a where b is an element of B satisfying s(b_a,y) = t(a,y)
for all y in Y; said b exists because (A,t,Y) was obtained from f that way, and is
unique by separability of B. f' is recovered dually.

The "only if" follows because

if A is not extensional there are at least two possible choices for f',
while if B is not separable there are at least two possible choices for f.

One could imagine many other ways of representing a Chu transform as a Chu
space; the reason for the "standardly" is to restrict to this particular
representation. Without some sort of limitation on the representation the "only
if" would not hold.

See [Pratt05a], [Prat05b], [Pratt99].

 Appendix III – Power Types

Roadmap for Semantics in Netcentric Enterprise Architecture 58 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Appendix III – Power Types
Consider the Dog example from Jim Odell. It goes like this. You define a class for
Dog. Then you define subclasses of Dog for Collie, Beagle and Spaniel. Fido is an
instance of Beagle. Lassie is an instance of Collie. So far so good, all directly
representable in a decidable description logic like OWL.

Now we introduce another class called Breed. The problem is that this forces
Collie to serve in two roles, as both class and as instance. As before Collie is a
class with Lassie as an instance; but Collie must also serve in the role of instance
- Collie is an instance of Breed. Either this concept is the same thing that is
simultaneously both class and instance, or there are two things, one a class, one
an instance, both map to the term "Collie" and an unknown relationship holds
between the two. The former approach is incompatible with a description logic;
the latter presents a currently unknown and undetermined relationship.

Ian Horrocks and his student Jeff Pan handled collisions between such twin roles
(class and instance) in the context of meta modeling by stratifying these roles
over distinct meta-levels, i.e., the Dog class plays the role of instance to the
language construct Class (at M2) while it plays the role of class to instances like
Fido (at M0).

In this case – with Collie and Breed – we do not have this luxury; Breed is clearly
at the level of domain ontology, the same level as Collie; yet Breed acts as
something much more like a language Class construct despite its being domain-
specific. And it's not alone; just consider Kingdom, Phylum, Class, Order, Family,
Genus, Species, Race and Haplotype. There may be many constructs that are
domain-specific yet have the force (and taxonomic structuring power) of
language constructs that we routinely relegate to the domain-independent
language layer but are part of an individual's or community's ontology.

The notion of power type was first introduced by Luca Cardelli in the 1980's
[Cardelli87]. Cardelli compares a subtype with subsets and a power types with
power set (the set of all subsets of a given set). So in terms of our example, if
the given type Dog is designated by the set of all dogs, and its subtypes are
given by each subset of the set of dogs (e.g., the set of Beagles, the set of
Spaniels, etc.) then the set of all subsets of dogs is the power set of dogs and
the power type of dogs is the set whose members are these subsets. Hence
Beagle, Collie, Spaniel, etc. are members of the power type of Dog; we call this
Breed.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 59 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Appendix IV – Managed Logic

Concrete example of Managed Logic (MAGIC)
Erick Von Schweber
12-02-2004

Note to the reader: This Managed Logic appendix is a very slight
revision of the 12-02-2004 version; a change was made to the
introduction to promote clarity. 01-18-2006

Managed Logic was our first roadmap towards automated semantic
interoperability and living languages.

Much of what we described on the road to Managed Logic is achieved
in Stage 1 of this current Roadmap for Semantics in Netcentric
Enterprise Architecture and demonstrated in its worked example above.
We include this paper here as an appendix for the reader's convenience.

Table of Contents
B2B example of Managed Logic .. 59

Introduction ..60
Introduction ..60
Concrete transformation code...61
Transformation Models...61

Mapping source to target metamodels ...68
Deriving transformation mappings ..73

Language Mappings..73
Ontology Alignment Mappings ...76

Deriving language and ontology alignment mappings from formal compositional definitions of
languages, logics and ontologies...86

Core Metamodeling Facility ...87
Institutions ..88
Information Flow Framework ..90
Where we go from here ..93

Appendix 1: MOF based metamodeling.. 97
Appendix 2: Model Management with MOF and XMI.................................... 102

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 60 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Introduction
The objective of Managed Logic, MAGIC for short, is to serve as a facility for the
definition and evolution of systems of synthetic languages and their artifacts. Key
to the MAGIC facility is the capability to automatically derive transformations
between language systems from the definitions of such systems within the
facility. MAGIC has potentially very broad applicability, across logics, modeling
languages, ontology languages, programming languages, message formats, data
models, etc.; such generality and horizontal applicability can make it difficult for
the newcomer to understand. To promote understanding of the approach taken
by MAGIC it was deemed desirable to work a concrete example in a commonly
understood domain, e.g., accounting. Below we introduce the problem and the
problem setup, including that which is given and that which we aim to achieve.

The challenge of the example to be worked, generally stated, is to transform a
relational representation into a semantically equivalent XML representation and
accomplish this with as little human involvement as is practicable. More
specifically, we are given a relational tuple of data for a line item of a transaction.
Also given is a reference to the relation schema that the tuple conforms to. Each
relational attribute of the referenced schema itself refers to a relational domain
that is grounded in a formal semantic, e.g., a source ontology. The challenge is
to transform the provided relational tuple into XML structured data for a line item,
where the XML data will conform to a given XML Schema (provided by a
reference) where the elements, attributes, namespaces and values of the XML
Schema are grounded in a given formal semantic, e.g., a target ontology.

The problem in outline form:

Given:
Source

A relational tuple
A relation schema that the tuple conforms to
A relational domain grounded in a formal semantic for each
relational attribute in the relation schema

Target
An XML Schema
A formal semantic grounding for each element, attribute,
namespace and value of the XML Schema.

Derive:
A transformation of the source tuple into XML structured data that
conforms to
the target XML Schema and conserves the source semantics.

The approach we describe here begins with the relational tuple and recurses
through the sub-problems that must be solved to address the challenge. We

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 61 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

hope to show, by the time we have recursed to the most foundational sub-
problem(s), how the overall challenge may be successfully addressed.

Before we launch into the details we preview the process in outline form.

1) Discover pre-existing concrete transformation code and enact it.
2) In the absence of pre-existing code, discover a pre-existing transformation

model: interpret the model or compile the model to code and enact it as
in step (1). Persist generated executables for future reuse.

3) In the absence of a pre-existing transformation model, discover a pre-
existing language mapping and ontology alignment mapping, reason the
way to a transformation model from these mappings. Continue with the
remainder of step (2).

4) In the absence of a language mapping or an ontology alignment mapping,
discover the formal, compositional definitions of the source and target
languages and ontologies and derive the language and/or ontology
alignment mapping(s) from the definitions. Continue with remainder of
step (3).

5) In the absence of formal language or ontology definitions create these as
needed. Continue with remainder of step (4).

Concrete transformation code
As the relation schema that our tuple conforms to is known by a unique identifier
within the overall system, and since the same is true for the target XML Schema,
we may use a search and discovery process to determine if a concrete
transformation between these two artifacts is already present somewhere in the
system, available either locally or remotely. By concrete transformation we mean
executable or interpretable transformation code. A search or discovery process
may be a local query, a remote query (client/server) or a peer-to-peer discovery
mechanism (e.g., JXTA, Groove, Kazaa, Grokster, etc.). Should such
transformation code be found then all that must be done is to retrieve and enact
it locally or alternatively, enact it as a remote service.

In the event we do not discover a pre-existing solution we take the next step: we
look to discover, through a discovery process of the kind just described, an
existing transformation model – a mapping - between the source and target
schemas. We will now describe and illustrate an example mapping.

Transformation Models
Note to the reader: This section presumes an understanding of the metamodel
hierarchy, from instance data through models, metamodels and MOF, the Meta
Object Facility serving as the meta metamodel, plus the interrelationships between
these. An introduction to these concepts is provided in Appendices 1 & 2.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 62 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

We begin, in effect, by jumping to the end of this section’s story, illustrating
what we mean by a transformation model, i.e., a mapping between models
expressed as a model that conforms to a transformation metamodel. We will
make a few remarks and then develop and explain such mappings from
metamodeling first principles.

In Figure 1 Abstract Syntax Tree for a Transformation Map we instantiate the
Common Warehouse Metamodel (CWM) Transformation metamodel in order to
map a relational purchase order line item as source to an XML purchase line item
as target.

Figure 1 Abstract Syntax Tree for a Transformation Map

This transformation, while articulated at two levels (the metamodel and model
levels) has consequence on three layers. At the metamodel layer it defines that
the Classifier “relational table” (i.e., relational entity type), will be transformed to
become the Classifier “XML elementType” and that the Feature “relational
column” will be transformed to become the Feature “XML attribute”.

At the model layer it defines that the relational table “POItem” will be
transformed to become the XML element type “POLineItem” and that the
relational columns “pricePerUnit” and “quantity” will be transformed according to
an expression to become a single XML attribute, “extendedPrice”.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 63 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Finally, at the instance layer, it has the consequence that, for each row of
relation POItem, the values of pricePerUnit and quantity must be multiplied to
produce the value of the XML attribute extendedPrice of the XML element that
represents the transformed instance.
We note in passing that the label “procedureExpression” of Figure 1 is somewhat
misleading: it need not be a procedural expression; it may also be declarative.

When we referred in the last section to “discovering a mapping” this is the kind
of thing we meant to discover. A mapping, as we are using the term here, is a
model, and models are not just pictures. The graphical view of a model is just
that, a specific type of view. A key aspect of modeling is the ability to view and
interact with models in many ways – as graphics, as structured documents,
through an API, even as binary – all of them equivalent semantically. This applies
to mapping models as well as to other kinds of models. Thus, we may discover a
mapping persisted as a document stored in a repository. Alternatively, we may
interface programmatically with a MOF repository using an API such as Java
Metadata Interface (JMI) to access and navigate a mapping that is managed by
the repository.

With some appreciation of what a mapping model is we may now return to
basics and explain where mappings come from and how they work.

We begin by considering a family of metamodels called Common Warehouse
Metamodel, or CWM1 for short. It probably should have been called Common
Warehouse Metamodels, noting the plural, for that is what it offers.2

CWM consists of a family of metamodels defined by meta-metamodel constructs
that are, for the present purposes, practically equivalent to those of MOF. The
purpose of CWM is to enable information flow across a range of logical and
physical data models. The family includes metamodels for relational,
multidimensional star-schema, record-structured, XML, hierarchical, and other
data models. What is unique, and what makes this a family and not just a
collection, is that all of the CWM metamodels conform to a common meta-
metamodel, essentially MOF.

1 Common Warehouse Metamodel is a standard of the Object Management Group.
2 For a more complete discussion of these concepts see David Frankel’s book, Model Driven Architecture.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 64 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 2 MOF Subclassing

In Figure 2 MOF Subclassing we show how a very simple, tabular data structure
can be defined as a MOF conformant metamodel, including a constraint that a
table owns its column set.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 65 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Now let’s take a look at the CWM metamodels for relational and XML, the subject
of our running example.

Figure 3 CWM Relational DB Metamodel illustrates how meta-metamodel
constructs from MOF, namely Classifier and Feature, are instantiated at the
metamodel layer (remember, MOF and its constructs are at the meta-metamodel
layer) as CWM Common metamodel constructs and then specialized so as to
define relational constructs, such as table and column.

Figure 3 CWM Relational DB Metamodel

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 66 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

We can impose further constraints in the metamodel, as is shown in Figure 4,
depicting a fragment of the CWM relational data metamodel.

Figure 4 Fragment of CWM Relational Data Metamodel

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 67 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

We can also illustrate a sample relational schema that conforms to the CWM
relational metamodel, as in Figure 5. Here we depict the schema as an instance
of the metamodel.

Figure 5 Specific Relational Data Model Instance

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 68 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Next we examine how meta-metamodel constructs, again Classifier and Feature,
are instantiated by CWM at the metamodel layer and specialized to define XML
constructs, namely element type and attribute, as is shown in Figure 6.

Figure 6 CWM XML Metamodel

Notice how both the relational and XML metamodels are defined in CWM by the
same constructs, ultimately instances of MOF Classifier and Feature.

While most of the data models that are now supported by CWM (as metamodels)
were developed independently of the others, because their CWM metamodels
conform to a common meta-metamodel they may be interrelated, specifically
mapped to one another. This is a key concept and we examine it in the next
section.

Mapping source to target metamodels
A transformation model requires both a metamodel mapping and a model
mapping that is constrained by the metamodel mapping. The groundwork for a
metamodel mapping has now been laid, as illustrated in Figure 7 Common Core
for UML, CWM, and MOF.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 69 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 7 Common Core for UML, CWM, and MOF

Elements of metamodels representing distinct systems may be defined using
common and relatable constructs. For example, the notion of a relational column
and an XML attribute are structurally quite distinct and governed by different
constraints, yet we have defined them using an identical metamodel construct,
Feature.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 70 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

We now look at the means to map common metamodels to one another. Figure
8 illustrates a fragment of the CWM Transformation metamodel that enables this.

Figure 8 Fragment of the CWM Transformation Metamodel

Note how the transformation metamodel enables Classifiers to be mapped to
Classifiers; Features to be mapped to Features; and Classifiers to be mapped to
Features. This becomes clearer if we make things more concrete by returning to
the specific mapping of a relational purchase order item to an XML purchase
order line item.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 71 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

In Figure 9 Abstract Syntax Tree for a Transformation Map, we instantiate the
CWM Transformation metamodel in order to map a relational purchase order line
item as source to an XML purchase line item as target.

Figure 9 Abstract Syntax Tree for a Transformation Map

The mapping explicitly defines not only what relational metamodel constructs are
mapped to which XML metamodel constructs (e.g., relational table to XML
element type) but also which specific entities of the source schema are mapped
to specific entities of the target (e.g., POItem maps to POLineItem). Both
structure and semantics are mapped by this one mapping model. It may be
noted in passing that the function responsible for the mapping may be used to
translate between systems of units or value or such may be formalized as part of
the mapping itself (the details are beyond the scope of this paper).

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 72 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

CWM, and a metamodeling approach to transformation in general, is not limited
to relational and XML however. Figure 10 provides just a sampling of the many
source/target transformation pairs that CWM facilitates via metamodels and
mappings.

Figure 10 CWM Transformation Sources and Targets

The transformation possibilities offered by CWM are extensive, and cover most
needs of the data warehousing community, to the extent that the major vendors
in the space, IBM and Oracle, have embraced CWM and offer implementations of
the standard. CWM however, provides a specific collection of metamodels out-of-
the-box, and this collection does not provide for all possible transformation
needs, which is more extensive than moving instance data between Online
Transaction Processing Systems and data warehouses.

Since late 2002/early 2003 the OMG has been working on generalizing CWM to
support all types and varieties of MOF-based transformations This idea, of CWM-
like transformations built directly around MOF 2.0, is supported by a current
standardization effort at the OMG that is already well along, defining MOF-based
transformations as part of the MOF 2.0 QVT specification
(Query/View/Transformation). QVT will support all of the mappings we’ve shown
here plus much more.

Should our discovery process find a pre-existing mapping we can use Model
Driven Architecture (MDA) code generation technology to generate executable

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 73 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

transformation code. Alternatively, we may use a model interpreter to interpret
the transformation mapping model at runtime to produce the target XML
representation. Generated transformation code may be persisted as an artifact
with an association created between the source and target schemas and the
newly generated transformation code, creating an asset that may be discovered
and reused in the future.3

Deriving transformation mappings
In the event we do not discover a pre-existing transformation mapping model we
set out to derive one from things more foundational. Things more foundational
include a transformation model that maps the source language, i.e., the
relational model of data, to the target language model, i.e., XML Schema
conformant XML. We call this a language mapping.

Language Mappings
A valid language mapping was implicit to the relational to XML line item mapping
we just explored in Figure 9. We now make the language map, at the moment a
very simplistic one, explicit.

Figure 11 and Figure 12 illustrate two equally valid ways of mapping the
structure of relational data into the structure of XML data. In the first we map
relational table to XML Element type (the same mapping that was implicit in
Figure 9). In the second we show a distinct – but equally valid – mapping, where
a relational attribute is mapped to an XML Element type, but in this case an
element that is the child of the XML Element that represents the relational table.

3 In other reports we have referred to the functionality discussed thus far as MRT – Model-driven
Representation and Transformation.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 74 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 11 Abstract syntax for a language map (1)

Figure 12 Abstract syntax tree for a language map (2)

This diversity of mappings is a consequence of the many ways in which
languages, XML in this case, may be employed in a representational task. After
all, it is the developer’s choice whether to represent a data item as an attribute
of an XML element or as a child element. The multiple possible mappings support
the many ways in which a language may be validly employed. We refer to this
expressive range, and the choice of a style that selects one from the many, as
representational idiom. Melnik and Decker, writing in a paper on the semantic
web, illustrated six distinct means of using Resource Description Framework
(RDF) to represent the statement that “Mozart was the principle composer of the

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 75 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Requiem but with assistance from Salieri” (ignoring for our purposes that this
belief is a myth not supported by historical fact).

While metamodel based techniques can express the many transformations
between languages they do not in and of themselves dictate “the right one” to
be used in each specific situation. However, where a representation model,
source or target, unambiguously designates the representational idiom at work,
then it is possible to automatically select a corresponding transformation
mapping.

In the B2B example both source and target schemas could reference the
representational idiom(s) at work (e.g., employing an idiom on the target side
that uses XML attributes rather than child elements), eliminating the ambiguity in
selecting a language mapping.

Put simply it comes down to this: a language is not completely specified unless
and until it is coupled with an idiom (moreover it can be argued that even with a
designated idiom a language specification is incomplete, requiring the further
designation of an ontology). When source and target languages are identified,
complete with source and target idioms, then a language transformation may be
selected (or derived/constructed in its absence).

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 76 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Ontology Alignment Mappings
A language mapping model is not the only thing more foundational that we
require for our derivation of a transformation mapping model from things more
foundational. Besides the identification of idioms involved in a language mapping
we also need a designation of how meaning embodied in the source
representation should be mapped to meaning as it is embodied in the target
representation. At minimum this requires a transformation that maps the formal
semantics of the source schema and data into the formal semantics of the target
schema and data.

The semantics that govern the relational line item source in the B2B example is
provided by a community-wide semantic called Open Buying on Internet (OBI)
while the Universal Business Language (UBL) provides the semantics of the
target. These two standards represent the agreed upon semantics of their
community respective communities, though neither of these is a full-fledged
ontology (UBL is heading in that direction).

For the purpose of our example we can treat both OBI and UBL as ontologies.
For reasons of manageability, interoperability and productivity, we choose to
author, view, manage and manipulate ontologies as models. Specifically,
ontologies may be represented as models that conform to a MOF-based Ontology
Definition Metamodel (ODM). The transformation model we need to transform
from the source ontology to the target ontology is therefore an ontology
alignment mapping.

We now take a brief look at the ODM. Note that the ODM is a work in progress
at the OMG, slated for adoption in late 2004 or early 2005. The snapshot we’ll be
reviewing is from late 2003, with several revisions having been made since that
time. After we present the snapshot we’ll highlight the major changes.

ODM is a MOF conformant metamodel intended to support models with the
expressive power of RDF(S), DAML+OIL, OWL (all levels), KIF, Conceptual
Graphs, and Common Logic. In other words, the metamodel supports the
concepts, structures and constraints of these languages with no loss of fidelity.
See Figure 13 Layered Ontology Definition Metamodel (ODM) Approach.

ODM will include standardized mappings to several knowledge representation
languages, e.g., IBM research, a member of the Ontology Definition Metamodel
submission team, is developing RDF(S) and OWL mappings to ODM’s core.
Sandpiper Software is a key player in the effort; also supporting the effort are
AT&T/Gentleware and DSTC.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 77 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Models that conform to ODM may be authored in IBM Rational Rose®
supplemented with a plug-in that supports the associated UML profile, such as is
provided by Sandpiper’s Medius® Visual Ontology Modeler (VOM).
Representations in the supported languages may then be imported and exported
based on the standardized mappings. Models that conform to ODM may exploit
XMI for tool and repository interchange and MOF repositories for management.

Figure 13 Layered Ontology Definition Metamodel (ODM) Approach

The core metamodel will be an abstracted representation that leverages
interoperability notions derived from frame-based systems such as OKBC (Open
Knowledge Base Connectivity), though it will not depend on OKBC, or frames, in
fact. It will be supported by a model-theoretic semantics.

A central notion in the development of the core metamodel is that "everything is
a relation”. Classes and individuals are unary relations, slots and RDF properties
are binary relations, facets are ternary relations, etc.

The core of ODM, supported by the Sandpiper plug-in to IBM Rational Rose, has
been in use for some time as part of HORUS, a DARPA program utilizing
ontologies for intelligence community needs.

“The focus of Horus is to enable and exploit semantic-based markup of
sources to promote information discovery and integration, ultimately by
software agents as well as humans. Users and agents will access,
manipulate, and create knowledge that is organized as Horus “knowledge

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 78 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

objects“. These (conceptual) objects represent real-world entities such as
military units, terrorist organizations, and geopolitical events. Information
in knowledge objects is linked to its source (i.e., a database or web page).
This supports the maintenance of information pedigrees and drilldown to
the original sources. User sites will build portals to provide access to these
objects, resident in a Horus Knowledge Base (KB).”4

Regarding tools used in the Horus project, ISX states:

“Authoring tools enable a (trained) user to define classes and properties
and specify their interrelationships via graphical user interfaces. These
tools output ontologies in an OBML [OBML refers to Ontology Based
Markup Language, e.g., DAML. Note added for clarity – not part of cited
source.]. Commercial companies, the RDF community, and the DAML
project have built a number of tools for authoring and validating
ontologies (and schemas). We have used COTS tools such as XML Spy™
(www.xmlspy.com) and Sandpiper’s Visual Ontology Modeler
(www.sandsoft.com).” 5

An overview of ODM, seen in Sandpiper Software’s Medius Visual Ontology
Modeler (VOM) is shown in Figure 14. A wider view of the same ODM overview is
depicted in Figure 15.

4 Brian Kettler, ISX Corporation
5 http://semanticobjectweb.isx.com/isx-sow-wp-2002-03.pdf

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 79 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 14 Ontology Definition Metamodel in Visual Ontology Modeler
(VOM)

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 80 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 15 Ontology Definition Metamodel (ODM) Overview

Some important features of the ODM:

• All ODM Core elements are relations (see Figure 16 Ontology Definition
Metamodel (ODM) Core (initial))

o Preserves semantics of individuals and classes as unary relations.
o Relation is a MOF Classifier with multiple inheritance support, thus

all core elements including individuals and facets can support
inheritance; constraints on inheritance are KR language specific
and therefore provided in metamodels layered on ODM Core.

o ODM Core supports n-ary relations; relations do not require
defined endpoints (critical in some knowledge representation
languages)

o Supports incomplete definitions and partial knowledge, including
incomplete specification of individuals (common in KR)

• Use of packages to emulate frames
o Provides a consistent mechanism for keeping details together

(slots, facets, axioms, diagrams, deployment details).
• Ontologies and frames are managed as separate components

o Facilitates collaborative, component-based development, reuse,
configuration management, ontology restructuring and
maintenance.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 81 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

The Sandpiper specific implementation of the ODM, in its Medius Visual Ontology
Modeler (VOM), supports these by emulating key features of some frame
systems in addition to supporting XML-based description logics languages.

Figure 16 Ontology Definition Metamodel (ODM) Core (initial)

The ODM has seen two major changes since the snapshot seen in Figure 16. The
ODM as presented here borders on being an ontology definition meta-
metamodel – a model for defining ontology definition metamodels. Such would
require a major rework of MOF itself. This motivated the first change, to
reconceive ODM as a collection of metamodels to suit the range of ontology
languages and representations in them, in the same spirit as CWM but for
ontology languages rather than data languages. Second, Common Logic (CL)
was itself evolving into Simplified Common Logic (SCL), and ODM was revised to
reflect this change. Overall, the revised ODM presents two packages, one for SCL
and ontology languages that may be represented by it (e.g., KIF, FOL,
Conceptual Graphs), and one for OWL, with the two packages extending a
common core.

Let’s return to our B2B example and apply the ODM. In this example we ground
each model, source and target, in a semantics that is standardized across each
one’s respective community. RosettaNet’s Open Buying on Internet (OBI),
though not a formal ontology, does provide an abstract model and semantics for

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 82 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

ecommerce that is shared across its community. OASIS’s Universal Business
Language (UBL) has gained even wider acceptance as a community-wide shared
semantics and, while not currently articulated in an ontology or knowledge
representation language, is moving in this direction, supported by ongoing
collaboration between OASIS and the W3C’s web ontology effort. Applying OBI
and UBL in this example conveys the essential concepts while keeping the
example clear and simple; use of large formal ontologies in this example, such as
Cyc, would have added needless complexity and drawn attention away from the
key points.

To achieve the grounding we first express OBI and UBL in terms of the Ontology
Definition Metamodel (ODM). Next, each element of the source model becomes a
subclass of an OBI element. Similarly, each element of the target model is
subclassed to a UBL element. This is shown in Figure 17 and Figure 18.

Figure 17 Semantically Grounding the Source Model

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 83 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 18 Semantically Grounding the Target Model

Since we have expressed both source and target semantics as models
conforming to ODM we may now apply a CWM-like transformation mapping
model to align these semantics: we may define a transformation map between
the ODM conformant models that represent the semantics of OBI and UBL. This
is depicted in Figure 19.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 84 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 19 Aligning Source and Target Ontologies

Returning to our example, our current aim is to derive a source to target schema
transformation model (a mapping model, as depicted earlier in Figure 9) from
the combination of a language mapping and an ontology alignment mapping
along with the source and target schemas. In keeping with our strategy we first
seek to discover a pre-existing language mapping and ontology alignment
mapping.

If we discover both of these mappings an automated reasoning method can
determine that POItem is semantically equivalent to POLineItem and create a
map between them. While the source has no semantic equivalent to the target’s
extendedPrice the reasoning method can construct a source expression that is
semantically equivalent, the product of the source’s pricePerUnit times quantity,
and can then map this expression to the target’s extendedPrice. A reasoning
method can thereby automatically produce a transformation model between the
source relational schema and the target XML Schema.

The symbolic reasoning techniques we consider to enable automated
identification and/or construction of semantic equivalencies include entailment,
deduction, induction, abduction and graph planning. We look to the efforts of

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 85 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

those working on Semantic Web Services (SWS) for techniques and experimental
results to guide our efforts in accomplishing this derivation (SWS has been
focused on automated composition of semantically described web services using
entailment and automated graph planning).

We emphasize that we can use a CWM-like (or MOF QVT) approach to define a
mapping between differing semantics. Because of the expressivity of ODM we
can create ODM conformant models of the well-known ontologies, such as Cyc,
SUO, SUMO and John Sowa’s upper ontology; we chose not to here in order to
keep the example and illustrations simple. However, this can be done, and that’s
the point: that we can apply MDA methodology and commercial MDA tooling to
ontologies and knowledge representations; that we can use MDA machinery to
align ontologies, author ontologies, revise ontologies, manage ontologies,
interrogate ontologies, serialize/deserialize ontologies as XML and thereby
distribute ontologies, and even generate code from ontologies! And as this
simple example illustrates, enabled by MDA methodology and machinery,
ontologies may be brought to bear directly within information management and
software development environments, methodologies and processes. This is a key
leverage point.

It should further be noted that by conducting alignment at the more abstract
ontology level, rather than the more concrete model level, several important
benefits accrue.

• Greater productivity is achieved as there are far fewer ontologies to be
aligned than the models that are grounded in these ontologies, and that
the derivation of a transformation map between models grounded in
aligned ontologies may be automated.

• Greater consistency is achieved as each ontology alignment cascades to
the numerous models that are grounded in such aligned ontologies.

• Greater correctness is achieved as ontologies generally provide richer
and more formal semantics on which to base alignment decisions.

Having derived a schema mapping from the more foundational language
mappings and ontology mappings we persist it for reuse, associate it with source
and target schemas and exit this level of recursion – we may generate code from
the mapping or interpret it (as was described earlier).

It is entirely possible that automatic derivation may fail in one of two ways. It
may not be able to derive a single schema mapping, but only constrain the
solution to one of several. Alternatively, it may derive an incorrect mapping. In
the former case, additional contextual knowledge must be brought to bear, such
as the objective(s) of the transformation between source and target and the
situation the transformation and target representation are a part of (or expected
to be a part of). Case Base Reasoning (CBR) may be a useful tool with which to

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 86 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

select the schema mapping that is the best match to the situation. Then too,
humans may be consulted, to provide hints, disambiguate or to guide/train the
Case Base Reasoner in the preferred trade-offs to make and the balance to be
achieved.

The other possible outcome is a transformation failure. Observing a failure
presumes a means to monitor usage of the transformed representation, either by
humans, applications or both, and determine deviation from expected or desired
behavior/performance. When such a discrepancy can be identified then Model
Based Diagnosis may be employed to identify the root cause(s) and attempt a
repair to the schema mapping. Again, humans may be consulted to aid or
accomplish the diagnosis and/or repair. Model Based Diagnosis equipped with a
supervised learning mode could profit from such human intervention.6

What is to be done if we do not discover pre-existing language and ontology
alignment mappings? This is addressed in the next section.

Deriving language and ontology alignment mappings from
formal compositional definitions of languages, logics and
ontologies
Recursing a level deeper still we now come to the most significant and
foundational sub-problems yet encountered here. In the absence of discovering
pre-existing source to target language and ontology alignment mappings we aim
to derive one or both of these, as required, from things still more foundational.
To enable this we now explore a compositional account of languages, logics and
ontologies, whereby such artifacts may be formally defined in terms of
compositions of fundamental components of language, logic and ontology.
Language and ontology alignment mappings are then to be formally derived from
the compositional definitions of source and target languages and ontologies.

At this point in our discussion we abandon our B2B example and instead point to
three separate but related efforts to provide the required mathematical
machinery as well as a basis of confidence that the goals of this section can
indeed be achieved. The reason we abandon the example is simple: we have not
yet worked out the B2B example directly with the approaches we are about to
discuss. We have considered, however, how the methods and techniques of the
three approaches could be applied to the challenge at hand. This consideration is,
for the time being, abstract.

To achieve the objectives of this section we require a number of capabilities.

6 The functionality discussed, inferring model mappings from language and ontology alignment mappings,
has been previously referred to as SMRT – Semantic Model-driven Representation and Transformation.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 87 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

a) Formalize a metamodeling facility (e.g., MOF), including the meta-
metamodel, the metamodels that conform to the meta-metamodel, the
models/ontologies that are instances of the metamodels, the instances
(i.e., system state or data) that are instances of the models/ontologies
and the numerous relationships between these entities. The formalization
must support verification and validity checking.

b) Means of formalization that is commonly applicable across the gamut of
logics, formal languages and ontologies of all kinds despite vast
differences in syntax and semantics.

c) Transform expressions in one language into another while conserving
meaning (and the knowledge to know when this is/is not possible.

d) Define by composition a new language from existing languages or a new
theory from existing theories.

e) Normalization of languages and ontologies into compositions of language
and ontology components and the interrelations between them.

The three approaches we will now consider are:

• Category-theoretic formalization of a metamodeling facility (CMF -
Core Metamodeling Facility)

• Institutions, Institution Morphisms, Charters and Parchments (Inst)
• Information Flow Framework (IFF)

Core Metamodeling Facility

CMF is a research effort spanning a decade, led by Ken Baclawski of
Northeastern University with primary contributions by Jeff Smith, Mitch Kokar
and others. See “Metamodeling Facilities, Work in progress for UML 2.0 Math
Framework and MOF 2.0 Transformation Proposal for OMG” Kenneth Baclawski,
Mieczyslaw Kokar and Jeff Smith Sept. 2003. The aim of CMF has been to
formalize the MOF using mathematical category theory with proofs conducted in
the formal language Slang in the Specware product. The strategy Baclawski et al
have employed is to define a small core facility for metamodeling, formalize the
core and then define MOF in terms of the core (a bootstrapping strategy).

The approach defines each layer of the metamodeling facility – meta-metamodel,
metamodel, model and instance – by specifying a literal type structure(s),
partially ordered sets, and order preserving functions. For example, the
isAbstract quality of a metamodel element is represented as a property function
with domain GeneralizableElement and range Boolean. Proofs are accomplished
by category theoretic commutative diagrams and partially ordered commutative
diagrams. In this fashion it is shown that CMF is both self-describing and
supports the layers and interrelationships required of a metamodeling facility.
The conditions that formally characterize the MOF in terms CMF are then
provided as axioms; these are the MOF axioms.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 88 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

This work demonstrates that a four-level metamodeling hierarchy such as MOF
may be formalized using category theory with the formalization supporting
verification and validity checking by means of category theoretic proofs. This
work therefore supports our capability (a).

Institutions
We quote from Institutions: Abstract model theory for Specification and
programming, Joseph Goguen and Rod Burstall, in Journal of the ACM, 39, No. 1,
Jan. 1992, pages 95-146.

We introduce the concept of institution to formalize the informal
notion of “logical system.” The major requirement is that there is a
satisfaction relation between models and sentences which is
consistent under change of notation. Institutions enable us to
abstract from syntactic and semantic detail when working on
language structure “in-the-large”; for example, we can define
language features for building large structures from smaller ones
[using category theoretic colimits], possibly involving parameters,
without commitment to any particular logical system. This applies
to both specification languages and programming
languages...[Results of this work include that] any institution such
that signatures (which define notation) can be glued together, also
allows gluing together theories (which are just collections of
sentences over a fixed signature)... gives conditions under which it
is sound to use a theorem prover for one institution on [translated]
theories from another... how to define institutions that allow
sentences and constraints from two or more institutions. All our
general results apply to such “duplex” or “multiplex” institutions.

 ...
In particular, if we are correct that the essential purpose of a
specification language is to say how to put (hopefully small and
well-understood) theories together to make new (and possibly very
large) specifications, then much of the syntax and semantics of
specifications does not depend upon the logical system in which the
theories are expressed...

Informally, an institution consists of:
• a collection of signatures (which are vocabularies for use in

constructing sentences in a logical system) and signature
morphisms, together with for each signature Σ ,

o a collection of Σ-sentences,
o a collection of Σ-models, and

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 89 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

o a Σ-satisfaction relation, of Σ-sentences by Σ-models,
such that when you change signatures (by a signature morphism),
satisfaction of sentences by models changes consistently.

One of the results of this paper mentioned above is particularly worth expanding
on for the present purposes.

Finally, “multiplex” institutions permit whatever combination of
sentences and constrains one might desire, provided they are
related by morphisms to the same base institution... Signature
morphisms play a basic role in structuring specifications. Let us
assume for concreteness of exposition that the signatures have
sorts and operators, and then consider some specific structuring
mechanisms. First, we may build a more complex specification by
adding new sorts and operators to an existing signature; then the
inclusion of the original signature into the extend signature is an
“enrichment” signature morphism. Second, we may wish to use
such an enrichment not just on one specification, but on a whole
class of specifications. This leads to parameterized specifications.
For instantiation, the parameter sorts and operators and operators
are bound to particular sorts and operators by a “binding” signature
morphism. Third, a large specification may have name clashes: two
subspecifications may happen to use the same sort or operator
names. These can be eliminated by signature morphisms that
define renamings. Enrichment, binding and renaming raise no deep
logical problems, but are still important for modular structure.
Using institutions, we can define such features without making a
commitment to any particular logical system. Moreover, the task of
giving a semantics for the language is also simplified. We feel that
these considerations justify an attempt to deal with logical systems
in a general way, free of the entanglements of any particular
syntax and semantics.

Over its twenty-plus year existence multiple researchers have applied the theory
of institutions to represent numerous logics and formal languages. Nearly every
logic one can think of has been shown to be an institution. The appendix in the
just cited paper provides proofs for many sorted equational logic (equations as
sentences, algebras as models); first order logic (with the usual first order
sentences and structures); many sorted first order logic; first order logic with
equality; many sorted first order logic with equality; Horn clause logic; Horn
clause with equality; many sorted Horn clause logic with equality; and others.
Page 141 of the above paper lists further logics for which it seems clear the
same proof methods will work, including higher order logic, standard modal
logics (with Kripke structures as models) and infinitary logics; proofs for these
and many others appear in the literature. The historical emphasis has been on

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 90 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

logics that are useful for specification. But the logics for KIF and (pure) Prolog
are among those used for ontologies that have been proved institutional, leaving
little doubt that RDF, OWL, etc. are also institutional.

Institutions thus demonstrate that a common formal approach can indeed be
employed across a very wide range of formal systems. Furthermore, the CMF
discussed in the last section has also been articulated as an institution. See “An
Institutional Framework for Metamodeling” Kenneth Baclawski, Mieczyslaw Kokar
and Jeff Smith Sept. 2003. For more on morphisms between distinct
institutions – a means of transforming from one institution to another - see
Institution Morphisms, Joseph Goguen and Grigore Rosu, in Formal Aspects of
Computing 13, 2002, pages 274-307. A related approach, applying the
Information Flow theory of Barwise and Seligman (one of the three cornerstones
of IFF, see below) is the IF-Map approach, with demonstrated examples
available at http://www.aktors.org/technologies/ifmap/. Additional examples are
presented in a paper by Marco Schorlemmer, "Formal support for representing
and automating semantic interoperability".

Our team, and others, have developed tools that implement parts and aspects of
the theory of institutions for a variety of purposes. These include CASL and
CafeOBJ (both based on Goguen’s OBJ) and Maude (previously used on DARPA
programs to implement complex institution morphisms).

The success of institutions across so many languages provides a measure of
confidence in support of our capabilities (b), (c) and (d).

Information Flow Framework

We now look at IFF, an ongoing effort led by Robert Kent at the IEEE by which
to componentize, rationalize and verify the IEEE Standard Upper Ontology (SUO)
and specific domain ontologies. See http://suo.ieee.org/IFF/ . IFF employs
elements of category theory, the Information Flow work of Barwise and Seligman
and Formal Concept Analysis (FCA) to achieve these aims.

Of particular interest for our purposes is the IFF structure called the Lattice of
Theories (LoT). The LoT formalizes a notion John Sowa calls “Knowledge Soup”,
an infinite, evolving structure that enables even conflicting, inconsistent
knowledge to coexist and be interrelated.

To formalize knowledge soup the LoT employs FCA’s notion of a concept lattice.
The concept lattices of FCA are essentially Galois lattices formed over what FCA
calls a formal context: a set of objects, a set of attributes and a relation that
associates each object in the formal context with the attributes in the formal
context it possesses. Each node of an FCA concept lattice is called a formal

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 91 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

concept and is defined by a set of objects, called an extent, and a set of
attributes, called an intent, drawn from the formal context such that a Galois
connection holds between intent and extent so that each attribute of a concept’s
intent is possessed by all of the objects in its extent; each object in the concept’s
extent is characterized by all of the attributes in its intent.

The LoT of the IFF is a concept lattice where each formal concept has as an
extent a class of models and as an intent a closed theory (as a set of expressions
in a language L) such that the extent is the class of models that satisfy the
theory and conversely that the intent is the theory that is satisfied by each model
in the extent.

Importantly, the partial order of the LoT is an ordering of theories: a theory T1

that is lower down in the LoT than a theory T2 means that T2 is more general
than T1 (by more general we mean T2 is constituted by a subset of the
expressions that constitute T1 – the former has fewer constraints than the later
and hence is more general). Thus the LoT provides a means to interrelate
theories and by following lattice edges navigate amongst theories, indeed to
revise theories. In “The IFF Approach to the Lattice of Theories”
http://suo.ieee.org/IFF/work-in-progress/ Robert Kent employs the LoT to
formalize John Sowa’s informal notion knowledge soup.

Figure 20 Navigating the Lattice of Theories, is from this citation showing how
one can revise a theory by appropriate navigation about the LoT. For example,
by moving upwards from T1 to T2 a contraction has been achieved (contraction
referring to the reduced set of expressions (axioms) that constitute the more
general theory). By moving down from T2 to T3 an expansion has been achieved
(adding expressions to the theory so as to narrow it). Such a contraction
followed by an expansion constitutes a theory revision. Additionally, by renaming
the parts of axioms that constitute a theory – relation types, entity types and
constants - analogous theories can be discovered.

Figure 20 Navigating the Lattice of Theories

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 92 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

This becomes clearer through an example. We recapitulate (and slightly
paraphrase) John Sowa’s example from his book “Knowledge Representation
Logical, Philosophical, and Computational Foundations” p.387. Consider theory
T1 as Newton’s theory of gravitation applied to the Earth revolving around the
sun. The contraction from T1 to T2 involves the deletion of axioms for the
gravitational force. In the expansion from T2 to T3 axioms for the electrical force
would be added. The net revision of T1 to T3 is to replace the gravitational force
in what is the Copernican model of the solar system with the electrical force.
Finally, we jump via analogy to a remote theory in the LoT (the previous
movements have all been local). For this analogy we systematically rename the
type, relations and individuals that appear in the axioms: the Earth is renamed
the electron; the sun is renamed the nucleus; and the solar system is renamed
the atom. A final revision of this analogy can discard details about the Earth and
Sun that have become irrelevant and add new axioms for quantum mechanics.

Another facet of the LoT, important to our present endeavor though not
elaborated on by Kent in the cited paper on IFF, is construction of theories. The
standard lattice operations of join (supremum – least upper bound) and meet
(infimum – greatest lower bound) provide the means to form new theories from
existing theories. (Note: By treating the LoT as a full-fledged mathematical
category additional options for theory creation become available.) Particularly
intriguing are the theories in the LoT that are minimal with respect to the axioms
that constitute them. Such theories may serve as atomic components for
composing more elaborate theories in the same vein as when Goguen speaks of
using institutions to “put (hopefully small and well-understood) theories together
to make new (and possibly very large) specifications”.

In the opening of this subsection on IFF we remarked that the purpose of IFF,
including its LoT, is to componentize, rationalize, verify and even merge
ontologies, both the general-purpose SUO as well as far more specific domain
ontologies. The central tactic here is that the IFF treats ontologies as theories.
The consequence is that the LoT may be employed to componentize, merge,
revise and generally navigate ontologies; indeed, to compose ontologies from
ontology components! And having composed two or more distinct ontologies
(from a library of ontology components) to know where the composed ontologies
are situated in the LoT and use the LoT to navigate – in other words, map or
transform – from one ontology to another without further adieu.

The IFF is focused on solving ontology problems through application of its
mathematical framework at what we call (in MOF speak) the M1 level, the level
of models/ontologies. However, we believe that there is great benefit to be had
by additionally applying IFF at a higher meta level, specifically M2, the level at
which metamodels are used to represent, manipulate, manage and transform

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 93 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

languages. We therefore take this further step and treat metamodels of logics
and languages as theories. We conceive of an IFF-like LoT where the theories
represent the metamodels of logics and languages, including metamodel
components of logic and language. This LoT at the metamodel level provides the
means to compose metamodels of logics and languages from metamodel
components of logic and language, and to navigate amongst such composed
metamodels of logics and languages. Add this to the analogous capability for
ontologies just discussed and we have the means to capability (e).

Where we go from here

In the remaining section we take a very early look at a notional strategy for
component-wise normalization and recomposition of languages, logics and
ontologies along the lines enabled by CMF, Institutions and IFF. For convenience
of exposition we introduce the term synthetic language systems (SLS) to
designate non-natural languages, logics and formal systems and their artifacts
across all metalevels (including meta-metamodel, metamodel, model/ontology
and instance).

Given the mathematical and computational tools and technologies described
throughout this paper we now seek to identify the mostly orthogonal concerns by
which an arbitrary synthetic language system may be factored (i.e., normalized
to components). We have provisionally defined a (mathematical) concern space
of seven dimensions to accomplish this. The dimensions are: logic constructors,
ontology constructors, abstract syntax, representational idiom, axiomatic
semantics, model theoretic semantics and proof theory. Points and regions of
this space may be mapped to and from a multitude of concrete and surface
syntaxes (which may also be considered as an aspect of the syntax dimension of
concern) in much the same way as MOF manages artifacts at all metalevels in
terms of an abstract syntax but may externalize to and internalize from specific
surface syntaxes.

There must additionally be a scheme for defining elementary components along
each identified dimension of concern and for interrelating the larger-grained,
composed components, e.g., the elementary logic constructors and the structure
that interrelates compositions of these up to the complexity of a complete
language/logic. We have outlined a scheme for defining elementary and
composed components for each of the seven dimensions of the concern space.
The schemes draw on the work referenced above to formalize and componentize
synthetic language systems.

A central problem to the effort is composing transformations between synthetic
language systems from more foundational mappings, and deriving these from

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 94 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

the relations that hold between their constituent components. From a category
theoretic viewpoint this involves producing morphisms from morphisms. The
work of team member Joseph Goguen with Ron Burstall on Institution charters
and parchments looks to be a promising foundation for such, and these
structures have already been successfully used by Mossakowski and others on
problems in the semantics of Institutions with tools like CASL.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 95 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 96 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

The figure on the previous page (MAGIC – Managed Logic – Technical Approach)
summarizes our formal framework in support of the recursive process we’ve
described in this paper to provide largely automated interoperability and
information flow between synthetic language systems. A thorough walk-through
of this figure is beyond the scope of the present paper. We do however, direct
attention to several highlights. Notice the Concern Space, Subspace and Relative
Metalevels lattices, strongly influenced by IFF’s notion of the Lattice of Theories
(though flipped top-to-bottom). Observe that the framework operates on all
metalevels, that these have been made relative, and that the framework is self-
describing. Attend to the use of category theoretic methods by which to compose
big things from small things, derive mappings between compositionally defined
entities and articulate proofs.

For the B2B example the relational model of data and XML and XML Schema
would need to be compositionally defined in the framework as languages and
OBI and UBL as ontologies would similarly need to be defined. We believe the
methods discussed in this section may then be used to automatically derive the
language mapping between relational and XML as well as to derive the ontology
alignment mapping between OBI and UBL. From these mappings, which would
be persisted for future reuse, we would reason the way to a transformation
model as discussed in the previous section and then interpret or compile the
transformation to produce the target XML representation of the line item.

Despite such advanced mathematical machinery there will doubtless be cases
that resist full automation and require human intervention. We suspect such
cases will be far more likely when deriving ontology alignment mappings than
when deriving language/logic mappings because we expect the definitions of
languages and logics to have less inherent ambiguity, variability and complexity
than the definitions of ontologies. In such cases humans must be empowered
with visual/graphical syntaxes for ontology alignment and high-level tools that
support them. Our brief review of graphical techniques for ontology definition,
management and alignment portends a direction, but considerable work is
needed to simplify the process so that domain specialists find it straightforward
to achieve good results with high assurance.

At the base of our recurse we strike what for us is bedrock: the definitions of
logics, languages and ontologies themselves in terms of atomic components.
Once again, we see a need for visual/graphical methods and tools for authoring
and management of the language definition process. Such methods and tools
must handle the arcane mathematics under-the-covers for the domain user while
enabling the expert full, unfettered access and control.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 97 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Appendix 1: MOF based metamodeling

A metamodel is a model that describes and structures another model.
In the case of our illustrative example, the relational model of data is the
metamodel for the purchase order line item schema, i.e., the line item schema
conforms to the concepts, structures and constraints of the relational model of
data – line items are represented as rows in a table; each line item must have a
unique key; the table of line items must not contain duplicate rows; the rows of
line items in the table are unordered; the columns of the line item table are
unordered; etc.

A metamodel may represent a language, i.e., its concepts, structures and
constraints.

In terms of our example, the “relational model of data” may equally be called the
“relational metamodel”.

Now come some thought-provoking questions: If a metamodel is a model that
describes and structures another model, then a metamodel is a model in its own
right. A model is expressed in a language, so what language is a metamodel
expressed in? Doesn’t this create an infinite regress, since the language used to
express the metamodel must itself be defined a priori?

Let’s approach this question in a somewhat different order than it is phrased. A
metamodel is indeed a model in its own right, and must therefore be expressed
in a language. In the case of the relational metamodel, the language it is defined
in is the mathematical language of set theory. This itself begs two more
questions: “Is there a formal role for the language with which a metamodel is
expressed?” and “In the case of the relational metamodel, is mathematical set
theory some kind of meta-metamodel, and if so, in what language is set theory
defined?

There is indeed a formal role for the language with which a metamodel is
expressed, and if it is expressed in the form of a model it is called a “meta-
metamodel”. Mathematical set theory is the meta-metamodel typically used to
define the relational metamodel.

However, mathematical set theory is the end-of-the-line, containing a small set
of axioms that are assumed to be true, with the rest of set theory consisting of
constructions, theorems and corollaries that logically follow from the given
axioms.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 98 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Language

Ontology

Instance

Model

Meta-language

Language

Ontology

Instance

Model

Meta-language

Metamodel

Ontology

Instance

Model

Meta-metamodel

Metamodel

Ontology

Instance

Model

Meta-metamodel

(Aside: Some theoreticians in the mathematical discipline known as Category
Theory utilize a special formal category to define set theory, making Category
Theory, or at least a part of it, the new end-of-the-line. For the rest of the
current discussion we will treat set theory as the stopping point of the

representational regress.)

We can graphically summarize these
thoughts, presented to the right. This
structure will be quite familiar to
those steeped in the world of
modeling and metamodeling,
particularly as these are embodied in

the standards of the Object Management Group.

For our immediate purposes we designate the meta-metamodel as the end-of-
the-line, preventing an infinite regress by expressing the meta-metamodel in
itself, i.e., the meta-metamodel is structured by and upholds the same principles
it imposes on those metamodels defined with it. To put it another way, the meta-
metamodel is defined and expressed by its own concepts, structures and
constraints.

Let’s begin putting some tangible flesh on this skeletal discussion that has grown
increasingly theory-laden. The UML standard, Unified Modeling Language, is
defined as a metamodel, expressed in terms of a meta-metamodel called the
Meta Object Facility, or MOF for short.7 Thus, UML the modeling language is
defined by MOF concepts, structures and constraints. However, UML is not the
only MOF conformant metamodel. There are many; some are adopted standards.

7 UML and MOF are standards of the Object Management Group.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 99 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

When discussing the various layers of representation in an OMG context we often
designate these as metalevels M0-M3, as is shown in Figure 21.

Figure 21 MOF Metalevels

 (Aside: Not to cause confusion, MOF itself reuses a carefully chosen subset of
UML. One may then conceive of the entirety of UML as defined and structured by
a small core of UML, which is used to define and structure itself.)

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 100 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

In Figure 22 UML Metamodel, we see a fragment of the MOF conformant UML
metamodel for “class”.

Figure 22 UML Metamodel

We can immediately see that the UML construct Class, as well as the constructs
it contains, Attribute and Operation, are specializations of Classifier and Feature,
which in turn are specializations of ModelElement. These last constructs –
Classifier, Feature and ModelElement – are MOF constructs; in other words they
are meta-metamodel elements used to define the UML metamodel.

MOF metamodeling has intrinsic benefits that aid in the definition of a language,
aside from the support MOF supplies for automating transformations. And UML is
not the only language to be represented by a MOF metamodel. To understand
these benefits, consider the ISO activity in progress to define a predicate
language named Simplified Common Logic (SCL). SCL will be the successor to
the ISO Knowledge Interchange Format (KIF), and is based on the Common
Logic work of John Sowa and others. The authors expect SCL to be an important
part of the Semantic Web.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 101 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

The primary author of SCL is Pat Hayes, an expert in formal logic and one of the
authors of the Semantic Web specifications. Pat has been writing an SCL
specification document that defines SCL’s abstract syntax, semantics, and a
textual concrete syntax for the language. He has simultaneously participated in
an activity with some experts in Model Driven Architecture to define a MOF
metamodel for SCL. The metamodel captures SCL’s abstract syntax as a formal
MOF model. This is a case where, instead of defining the MOF metamodel for a
language retrospectively—that is, after the language has already been defined
and come into use—the MOF metamodel is being defined concurrently with the
process of defining the language.

The process of creating a MOF metamodel of the SCL abstract syntax has helped
with the definition of the language, surfacing errors and raising issues that might
have escaped notice otherwise. As is typically the case for MOF metamodels, the
SCL metamodel uses UML notation, and formally states invariant rules pertaining
to the abstract syntax. The visual model helps to make the abstract syntax more
intellectually manageable; this, combined with the process of writing formal
invariant rules, tends to “shake out” bugs in the language.

Furthermore, the metamodeling team, including Pat Hayes, Elisa Kendall, David
Frankel and Deb McGuinness, used a model compiler that is part of the Eclipse
Modeling Framework (EMF). The compiler implements XMI’s MOF-to-XML
mapping (see Appendix 2, below), and thereby generated an XML Schema for
SCL, which essentially constitutes an XML-based concrete syntax or serialization
format for SCL. The ISO may be able to use this Schema rather than having to
laboriously hand craft an XML Schema. The model compiler also generated code
for serializing SCL expressions in and out of Eclipse, using the XMI-based
Schema.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 102 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Appendix 2: Model Management with MOF and XMI

The approach of Model Driven Architecture requires that MOF conformant
metamodels be authored for each transformation source and target. MOF
conformant metamodels are typically authored, viewed and edited in a graphical
UML modeling environment, such as IBM’s Rational Rose and XDE. For the time
being a full featured and complete environment requires a client-side application.

What is less commonly known is that MOF conformant metamodels may also be
created, viewed, queried, updated and deleted within a MOF repository. Think of
a MOF repository as a multi-level database for managing the MOF meta-
metamodel, MOF conformant metamodels (such as the ones we’ve been
discussing for UML and CWM), models that conform to these metamodels, and
instance data that conform to the models – managing artifacts at and across all
four meta levels. This can be seen in Figure 23.

Figure 23 MOF Repository

Contrast this with a typical RDBMS that offers a single fixed data abstraction –
everything is a relation – the user of which may only define relational schemas
and populate them with relationally structured data, even if the user is the
database administrator with all the powers associated with this role.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 103 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

A MOF repository can certainly be used for relational information: by importing a
relational metamodel into a MOF repository one can now manage relational
schemas, and can even manage relational data, i.e., rows, that conform to the
schemas.8

The crucial point, however, is that the very same MOF repository that is
managing relational schemas and tables can at the same time be managing
hierarchical schemas, multidimensional star schemas, XML schemas, ontological
concepts and conceptual relationships... - anything for which a MOF conformant
metamodel may be defined. Figure 24 Integrated MOF Repository, provides just
a rough idea of this versatility, flexibility and representational power.

Figure 24 Integrated MOF Repository

Notice in this illustration the numerous modalities with which to interface and
access a MOF repository, and these are just the modalities that have been
standardized thus far. Two standardized programmatic interfaces are available: a
Java API, known as JMI for Java Metadata Interface9 and a CORBA interface10

8 We are not recommending that large operational stores of relational instance data be managed in a MOF
repository in this fashion – they would be better managed in an RDBMS in order to benefit from the
specialized physical schemas and optimizations incorporated in products that have been developed
specifically to support relational data access and manipulation.
9 JMI is a specification of the Java Community Process, specifically JSR 40.
10 The MOF Corba interface is a standard of the Object Management Group.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 104 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

providing MOF support to the many languages supported by CORBA. Interfacing
with a MOF repository may also be accomplished in an XML document-centric
fashion, supported by XMI, XML Metadata Interchange11, of which we will have
more to say shortly.

In passing we note that a modeling tool may offer support for these same
interfaces and modalities without providing the persistence and server-centric
features of a full repository. IBM’s Eclipse Modeling Framework and Sun
Microsystem’s NetBeans are such environments, enabling metamodels and their
conforming models and instances to be accessed and manipulated
programmatically and input/output via XML.

Since the transformation models we’ve been discussing are themselves models
that conform to a MOF metamodel - the CWM transformation metamodel - these
too may be defined, revised and generally managed within a MOF repository.
This is shown in Figure 25 Managing CWM Transformation Rules.

Figure 25 Managing CWM Transformation Rules

Additionally, MOF repository implementations (e.g., commercial products), such
as Adaptive’s ITPM, also support a web services interface utilizing WSDL
descriptions and SOAP bindings, as well as an HTTP/HTML interface. This means
that MOF conformant metamodels, models and instances can be created and

11 XMI is a standard of the Object Management Group.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 105 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

managed on the server-side, within a MOF repository, through a web service or
even a thin client. Adaptive’s implementation even offers SVG (Scalable Vector
Graphics) views of UML and MOF models, as well as browser-based model
creation and editing through forms.

There’s little doubt that client-side UML environments such as Rational Rose are
most appropriate to serve as the primary means of authoring metamodels and
transformation models. However, these tasks are unlikely to be fulfilled by
individual developers working in isolation. Rather, this will become a
collaborative process, involving the contributions of more than a single individual.
A MOF repository provides the means for teams to collaboratively author, review
and revise metamodels and transformation models, with some team members
working through a tool like Rose, publishing to and retrieving from the repository;
other members will work more in a review capacity, accessing the repository,
viewing its contents through a browser and suggesting revisions; while other
members will tweak and rev metamodels and transformation models through a
forms interface and/or a web service. A MOF repository can support the
collaborative team operating in all of these diverse modes while maintaining
consistency.

Such collaborative teams may be widely distributed, even working in a peer-to-
peer fashion; it’s important to note for operations of this type that a MOF
repository needn’t be configured as a centralized installation. Figure 26 illustrates
a (simple) federation of MOF repositories. Far more elaborate schemes may be
configured.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 106 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 26 Federated MOF Repositories

Within a federate - a single MOF repository that’s part of a federation - clients
may access and interface the repository through a programmatic interface
(which could well include a web services interface). However, the connecting
fabric between federates - that which constitutes the federation - is far more
likely to be embodied by XML document exchange with its tolerance for
unreliable networks and its friendliness towards loose coupling. This brings our
discussion to the topic of XMI, which is covered in the next section.

Serialization via XMI
Basing metamodels on the MOF meta-metamodel pays additional dividends when
it comes time to externalize such metamodels, and the models and instances
that conform to them, beyond the environment in which they reside or were
created, e.g., a MOF repository or UML modeling environment. We’ve already
seen that the MOF’s APIs allow metamodels, models and even instances to be
programmatically created, interrogated and managed. Beyond programmatic
interfaces MOF also enables a modality by which metamodels and their
conforming models and instances may be exported and imported as XML
documents that conform to an XML DTD or XML Schema.

This capability, called XMI for XML Metadata Interchange, is provided by a
standardized transformation mapping MOF to XML, as seen in Figure 27.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 107 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 27 MOF-XML Mapping

We read this diagram as follows. The standardized XMI mapping takes as input a
specific MOF conformant metamodel, a specific model that conforms to the
metamodel, and a set of parameter values. The product of this transformation is
an XML document that represents the specific input model, now in the form of
XML, plus an XML DTD or XML Schema that represents the specific metamodel,
and to which the produced XML document conforms. This becomes clearer when
we look at an example.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 108 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

In Figure 28 we see the case where the inputs are the MOF conformant
metamodel for UML along with a specific UML model, e.g., a UML class model for
the Employee class. The output is an XML document that represents the
Employee class model, and an XML DTD or XML Schema that represents UML, to
which the XML Employee document conforms.

Figure 28 MOF-XML Mapping Applied to UML

It is a common misconception that the XML DTD or XML Schema of this last
example (that represents the MOF conformant UML metamodel) is the total
extent of XMI. Though highly useful, this DTD and Schema is but one artifact
that the XMI mapping can produce. XMI will produce a DTD or Schema for any
MOF conformant metamodel. Examples include DTDs and Schemas for the CWM
metamodels we looked at earlier, such as the relational metamodel, and any
custom defined metamodels, such as ones that may be created for the
information products of analyst tools and services. Even transformation models
can be serialized as XML using XMI. The fact is XMI provides a common
serialization/deserialization across all metalevels. This is seen by example in
Figure 29.

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 109 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

Figure 29 XMI Products Across Levels

Export via XMI is one side of the equation, but it also supports import. These
transformations can essentially be run in reverse order, taking an XMI XML
document as input and recreating the original model. Some implementations of
XMI that support this process do not even require the XML DTD or Schema when
performing the import – they literally read the metamodel, rather than the DTD
or Schema, and use it to parse the XMI document.

There’s another interesting twist on the process, this one also regarding XML as
input. The XMI standard will also create a model when the input document is
XML but not XMI compliant. This is shown in Figure 30. In other words, if one
has an existing XML DTD or Schema, created by any means, one may use the
XMI machinery to reverse engineer the model that is implicit within. One must
provide or specify the metamodel that this model will conform to; this is typically
the UML metamodel, but it needn’t be.

Figure 30 XML-MOF Reverse Mapping

 Appendix IV – Managed Logic
 12-02-2004 B2B example of Managed Logic Copyright © Infomaniacs/Synsyta 2004-06 All Rights Reserved

Roadmap for Semantics in Netcentric Enterprise Architecture 110 of 110
Prepared for the Office of the CTO, US General Services Administration 2/2/2006
Erick Von Schweber Synsyta LLC © Synsyta 2006 All Rights Reserved erick@synsyta.com

While it should be noted that non-XMI XML lacks some of the information
captured by XMI XML, and thus reverse engineering may not produce as rich a
model as if one had created it in a UML modeling environment in the first place,
this reverse engineering provides an excellent starting point for model
development. Consider the notional process below.

1. Start with an existing XML DTD or Schema (to which existing instance
data, represented as XML documents, conforms)

2. Automatically reverse engineer its UML model (or model that conforms to
a different metamodel)

3. Revise and elaborate the model
4. Apply forward generation to produce a new DTD or Schema that conforms

to the elaborated model
5. Define a transform between the old, reverse engineered model and the

new elaborated one
6. Execute the transform to move XML document data to the new elaborated

model as represented by the new XML DTD or XML schema

XMI is a flexible and agile means for moving metamodels, models and instances
between repositories and tools of all sorts.

