
Celtix Enterprise
Getting Started with Celtix Enterprise

Version 1.0
December 2006

Making Software Work Together™

Getting Started with Celtix Enterprise
IONA Technologies

Version 1.0

Published December 4, 2006
Copyright © 1999-2006 IONA Technologies PLC.

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together, Adaptive Runtime Technology, Orbacus,
IONA University, and IONA XMLBus are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Table of Contents
Preface .. vi

What is Covered in This Book .. vi
Who Should Read This Book ... vi
The Celtix Enterprise Library ... vi
Getting the Latest Version .. vii
Searching the Celtix Enterprise Library .. vii
Additional IONA Resources .. vii
Open Source Project Resources .. viii
Document Conventions .. viii

1. Basic Celtix Demonstrations .. 1
Before You Start ... 1
Getting Started Demonstrations .. 2
Greeter Service WSDL ... 3
Greeter Service Implementation ... 8

2. Standalone Service .. 10
Standalone Demonstration .. 10
Main Function for a Standalone Service .. 11
Build and Run the Standalone Demonstration .. 12

3. Service in a Servlet Container ... 16
Servlet Container Demonstration ... 16
Deploying to a Servlet Container ... 18
Build and Run the Servlet Container Demonstration .. 21

4. Service in a JBI Container ... 24
JBI Container Demonstration ... 24
The JBI Service Assembly ... 26
Build and Run the JBI Container Demonstration ... 30

iii

List of Figures
2.1. Overview of the Standalone Demonstration ... 10
3.1. Overview of the Servlet Container Demonstration .. 17
4.1. Overview of the JBI Container Demonstration .. 25
4.2. Example of a JBI Service Assembly ... 27

iv

List of Examples
1.1. Windows Environment for Celtix ... 1
1.2. UNIX Environment for Celtix ... 2
1.3. Greeter Port Type and Associated Schema .. 3
1.4. SOAP Binding for the Greeter Interface .. 6
1.5. HTTP Port for the Greeter Interface ... 7
1.6. The GreeterImpl Class ... 8
2.1. Server main() Function for the Greeter Service ... 11
4.1. xformat Binding Element for the Greeter Service ... 28
4.2. jbi Endpoint for the Greeter Service ... 29
4.3. Configuration of the SOAP+HTTP Binding Component ... 29

v

Preface
What is Covered in This Book

This book introduces you to some of the major components of Celtix Enterprise. In particular, for each of the
container types provided by Celtix, this guide explains the basic architecture of the container and describes
how to deploy a simple demonstration to the container.

Who Should Read This Book
This book is aimed at developers and deployers who want to gain a rapid overview of the major components
of Celtix Enterprise.

The Celtix Enterprise Library
The Celtix Enterprise documentation library consists of the following books:

• Installing the Celtix Enterprise Binary Distribution describes the prerequisites for installing Celtix Enterprise
and the procedures for installing Celtix Enterprise from the binary distribution. This is the preferred
installation procedure for most users.

• Installing Celtix Enterprise from the Source Distribution describes the prerequisites for installing Celtix
Enterprise and the procedures for installing Celtix Enterprise from the source distribution. This is only
recommended for advanced users.

• An Introduction to Celtix Enterprise describes the components that make up Celtix Enterprise and how the
work together. It also describes many of the concepts and techniques involved in SOA.

• Getting Started with Celtix Enterprise describes how to get up and running using Celtix Enterprise using a
detailed example of creating and deploying a service.

• Using Celtix Enterprise provides detailed information on using Celtix Enterprise to develop and deploy Java
services.

• Celtix Enterprise Command Reference is a quick reference to the commands you need when developing
and deploying services with Celtix Enterprise.

The Celtix Enterprise GUI tools also include on-line help. To access it select Help → Help Contents. The help
for the Celtix Enterprise GUI tools is in the section entitled SOA Tools Platform Developer Guide.

vi

http://www.iona.com/support/docs/celtix/1.0/install_bin/install_bin.pdf
http://www.iona.com/support/docs/celtix/1.0/install_src/install_src.pdf
http://www.iona.com/support/docs/celtix/1.0/overview/overview.pdf
http://www.iona.com/support/docs/celtix/1.0/user_guide/user_guide.pdfindex.html
http://www.iona.com/support/docs/celtix/1.0/command_ref/command_ref.pdfindex.html

In addition to the above books, you may also want to read the documentation for each of the components
that Celtix Enterprise bundles. This documentation is available from the projects responsible for developing
the component.

Getting the Latest Version
The latest updates to the Celtix Enterprise documentation can be found at http://www.iona.com/support/docs.

Compare the version dates on the web page for your product version with the date printed on the copyright
page of the PDF edition of the book you are reading.

Searching the Celtix Enterprise Library
You can search the online documentation by using the Search box at the top right of the documentation
home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page, and use the Search box at the top
right, for example:

http://www.iona.com/support/docs/celtix/1.0

You can also search within the PDF versions of each book. To search within a PDF version of a book, in
Adobe Acrobat, select Edit → Find, and enter your search text.

Additional IONA Resources
The IONA Knowledge Base [http://www.iona.com/support/knowledge_base/index.xml]
(http://www.iona.com/support/knowledge_base/index.xml) contains helpful articles written

by IONA experts about Inferno and other products.

The IONA Update Center [http://www.iona.com/support/updates/index.xml]
(http://www.iona.com/support/updates/index.xml) contains the latest releases and patches

for IONA products.

If you need help with this or any other IONA product, go to IONA Online Support
[http://www.iona.com/support/index.xml] (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be sent to
<docs-support@iona.com>.

vii

Preface

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/celtix/1.0
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

Open Source Project Resources

Apache Incubator CXF
Web site: http://incubator.apache.org/cxf/

User's list: <cxf-user@incubator.apache.org>

Apache Incubator Qpid
Web site: http://incubator.apache.org/qpid/

User's list: <qpid-user@incubator.apache.org>

Apache Tomcat
Web site: http://tomcat.apache.org/

User's list: <users@tomcat.apache.org>

ActiveMQ
Web site: http://www.activemq.org/site/home.html

User's list: <activemq-users@geronimo.apache.org>

Apache Incubator ServiceMix
Web site: http://servicemix.org/site/home.html

User's list: <servicemix-users@geronimo.apache.org>

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

viii

Preface

http://incubator.apache.org/cxf/
http://incubator.apache.org/qpid/
http://tomcat.apache.org/
http://www.activemq.org/site/home.html
http://servicemix.org/site/home.html

Fixed width (Courier font) in normal text represents portions of code and literal names
of items such as classes, functions, variables, and data structures. For example, text
might refer to the IT_Bus::AnyType class.

fixed width

Constant width paragraphs represent code examples or information a system displays
on the screen. For example:

#include <stdio.h>

Fixed width italic words or characters in code and commands represent variable values
you must supply, such as arguments to commands or path names for your particular
system. For example:

Fixed width

italic

% cd /users/YourUserName

Italic words in normal text represent emphasis and introduce new terms.Italic

Bold words in normal text represent graphical user interface components such as menu
commands and dialog boxes. For example: the User Preferences dialog.

Bold

Keying conventions
This book uses the following keying conventions:

When a command’s format is the same for multiple platforms, the command prompt is
not shown.

No prompt

A percent sign represents the UNIX command shell prompt for a command that does
not require root privileges.

%

A number sign represents the UNIX command shell prompt for a command that requires
root privileges.

#

The notation > represents the MS-DOS or Windows command prompt.>

Horizontal or vertical ellipses in format and syntax descriptions indicate that material
has been eliminated to simplify a discussion.

...

Brackets enclose optional items in format and syntax descriptions.[]

Braces enclose a list from which you must choose an item in format and syntax
descriptions.

{ }

In format and syntax descriptions, a vertical bar separates items in a list of choices
enclosed in {} (braces).

|

ix

Preface

Admonition conventions
This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely
to cause damage to your data or your systems.

Warnings display information about errors that may cause damage to your systems. Possible damage
from these errors include system failures and loss of data.

x

Preface

Chapter 1. Basic Celtix Demonstrations
This chapter explains how to set up your environment and gives a quick overview of the getting started
demonstrations. It is recommended that you read this chapter before proceeding to build and run the demonstrations.

Before You Start
Before you start, you need to ensure that your environment variables and path are correctly set up to access
the requisite components of Celtix Enterprise.

Prerequisites
To run the demonstrations described in this document, you need to have the following product installed:

• Java Platform, Standard Edition 5.0 (that is, JDK 1.5.x)—you can download the latest JDK from Java
SE Downloads [http://java.sun.com/javase/downloads/index.jsp].

Windows environment
Example 1.1, “Windows Environment for Celtix” shows an example of a script that sets the environment
variables you need to run the demonstrations on Windows.

Example 1.1. Windows Environment for Celtix
@echo off
REM Celtix Enterprise Environment

set CELTIX_HOME=CeltixInstallDir
set JAVA_HOME=JDKInstallDir
set ANT_HOME=%CELTIX_HOME%\tools\ant

set CLASSPATH=.;%CELTIX_HOME%\lib\cxf-incubator.jar;.\build\classes

call "%CELTIX_HOME%\bin\celtix_env.bat"

echo Set Celtix Enterprise Environment Variables

Where CeltixInstallDir is the directory where you installed Celtix Enterprise, and JDKInstallDir

is the directory where you installed Sun’s Java Platform, Standard Edition.

1

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

UNIX environment
Example 1.2, “UNIX Environment for Celtix” shows an example of a script that sets the environment variables
you need to run the demonstrations on UNIX.

Example 1.2. UNIX Environment for Celtix
#!/bin/sh
Celtix Enterprise Environment

CELTIX_HOME=CeltixInstallDir
export CELTIX_HOME

JAVA_HOME=JDKInstallDir
export JAVA_HOME

ANT_HOME=$CELTIX_HOME/tools/ant
export ANT_HOME

CLASSPATH=.:$CELTIX_HOME/lib/cxf-incubator.jar:./build/classes
export CLASSPATH

. $CELTIX_HOME/bin/celtix_env.sh

echo Set Celtix Enterprise Environment Variables

Where CeltixInstallDir is the directory where you installed Celtix Enterprise, and JDKInstallDir

is the directory where you installed Sun’s Java Platform, Standard Edition.

Getting Started Demonstrations
To get started with Celtix, you need to gain familiarity with the various components that make up Celtix
Enterprise. The getting started demonstrations have been selected to give you a quick tour of the features
and components available.

Standalone demonstration
The standalone demonstration describes how to deploy a service in standalone mode, using the Celtix ASE
to instantiate and activate the service.

See Chapter 2, Standalone Service .

2

Basic Celtix Demonstrations

Container demonstrations
The following container demonstrations are described in this guide:

• the section called “Servlet container demonstration” .

• the section called “JBI container demonstration” .

Servlet container demonstration
The servlet container demonstration describes how to deploy a service into a servlet container, such as
Apache Tomcat.

See Chapter 3, Service in a Servlet Container .

JBI container demonstration
The JBI container demonstration describes how to deploy a service into a Java Business Integration (JBI)
container, such as Apache Incubator ServiceMix.

See Chapter 4, Service in a JBI Container .

Greeter Service WSDL
The demonstrations described in this document are based on the Greeter service. For reference, this section
provides a listing of the Greeter service’s WSDL contract, which consists of a logical part (the Greeter port
type), a SOAP binding, and a HTTP port.

Logical part of Greeter WSDL
Example 1.3, “Greeter Port Type and Associated Schema” shows the logical part of the Greeter WSDL. The
Greeter interface is common to most of the demonstrations discussed in this document.

Example 1.3. Greeter Port Type and Associated Schema
<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello_world_soap_http"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

3

Basic Celtix Demonstrations

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://apache.org/hello_world_soap_http/types"

elementFormDefault="qualified">
<simpleType name="MyStringType">
<restriction base="string">

<maxLength value="30" />
</restriction>
</simpleType>

<element name="sayHi">
<complexType/>

</element>
<element name="sayHiResponse">

<complexType>
<sequence>

<element name="responseType" type="string"/>
</sequence>

</complexType>
</element>
<element name="greetMe">

<complexType>
<sequence>

<element name="requestType" type="tns:MyStringType"/>
</sequence>

</complexType>
</element>
<element name="greetMeResponse">

<complexType>
<sequence>

<element name="responseType" type="string"/>
</sequence>

</complexType>
</element>
<element name="greetMeOneWay">

<complexType>
<sequence>

<element name="requestType" type="string"/>
</sequence>

</complexType>
</element>
<element name="pingMe">

<complexType/>
</element>
<element name="pingMeResponse">

<complexType/>
</element>
<element name="faultDetail">

4

Basic Celtix Demonstrations

<complexType>
<sequence>

<element name="minor" type="short"/>
<element name="major" type="short"/>

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>
<wsdl:message name="sayHiRequest">

<wsdl:part element="x1:sayHi" name="in"/>
</wsdl:message>
<wsdl:message name="sayHiResponse">

<wsdl:part element="x1:sayHiResponse" name="out"/>
</wsdl:message>
<wsdl:message name="greetMeRequest">

<wsdl:part element="x1:greetMe" name="in"/>
</wsdl:message>
<wsdl:message name="greetMeResponse">

<wsdl:part element="x1:greetMeResponse" name="out"/>
</wsdl:message>
<wsdl:message name="greetMeOneWayRequest">

<wsdl:part element="x1:greetMeOneWay" name="in"/>
</wsdl:message>
<wsdl:message name="pingMeRequest">

<wsdl:part name="in" element="x1:pingMe"/>
</wsdl:message>
<wsdl:message name="pingMeResponse">

<wsdl:part name="out" element="x1:pingMeResponse"/>
</wsdl:message>
<wsdl:message name="pingMeFault">

<wsdl:part name="faultDetail" element="x1:faultDetail"/>
</wsdl:message>

<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">

<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>

<wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>

</wsdl:operation>

<wsdl:operation name="greetMeOneWay">
<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>

</wsdl:operation>

5

Basic Celtix Demonstrations

<wsdl:operation name="pingMe">
<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>

</wsdl:operation>
</wsdl:portType>

...
</wsdl:definitions>

SOAP binding for Greeter
Example 1.4, “SOAP Binding for the Greeter Interface” shows the SOAP binding, Greeter_SOAPBinding,

for the Greeter interface.

Example 1.4. SOAP Binding for the Greeter Interface
<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello_world_soap_http"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
...

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="sayHi">
<soap:operation soapAction="" style="document"/>
<wsdl:input name="sayHiRequest">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="sayHiResponse">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="greetMe">
<soap:operation soapAction="" style="document"/>
<wsdl:input name="greetMeRequest">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="greetMeResponse">

<soap:body use="literal"/>

6

Basic Celtix Demonstrations

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="greetMeOneWay">
<soap:operation soapAction="" style="document"/>
<wsdl:input name="greetMeOneWayRequest">

<soap:body use="literal"/>
</wsdl:input>

</wsdl:operation>

<wsdl:operation name="pingMe">
<soap:operation style="document"/>
<wsdl:input>

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="pingMeFault">

<soap:fault name="pingMeFault" use="literal"/>
</wsdl:fault>

</wsdl:operation>

</wsdl:binding>
...

</wsdl:definitions>

HTTP port for Greeter
Example 1.5, “HTTP Port for the Greeter Interface” shows the definition of a HTTP port for the Greeter
interface with a SOAP binding.

Example 1.5. HTTP Port for the Greeter Interface
<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello_world_soap_http"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
<wsdl:service name="SOAPService">

<wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>

7

Basic Celtix Demonstrations

</wsdl:service>
</wsdl:definitions>

Greeter Service Implementation
This section shows a sample implementation of the Greeter interface. Due to the portability of the Celtix

ASE programming API, this same code can be deployed into a wide variety of containers, including a servlet
container, a JBI container, and a Spring container.

GreeterImpl class
The GreeterImpl class shown in Example 1.6, “The GreeterImpl Class” provides the implementation of

the Greeter interface.

Example 1.6. The GreeterImpl Class
package demo.hw.server;

import java.util.logging.Logger;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.types.FaultDetail;

1@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
targetNamespace = "http://apache.org/hello_world_soap_http",
endpointInterface = "org.apache.hello_world_soap_http.Greeter")

2public class GreeterImpl implements Greeter {

private static final Logger LOG =
Logger.getLogger(GreeterImpl.class.getPackage().getName());

3 public String greetMe(String me) {
LOG.info("Executing operation greetMe");
System.out.println("Executing operation greetMe");
System.out.println("Message received: " + me + "\n");
return "Hello " + me;

}

public void greetMeOneWay(String me) {
LOG.info("Executing operation greetMeOneWay");
System.out.println("Executing operation greetMeOneWay\n");
System.out.println("Hello there " + me);

}

8

Basic Celtix Demonstrations

public String sayHi() {
LOG.info("Executing operation sayHi");
System.out.println("Executing operation sayHi\n");
return "Bonjour";

}

public void pingMe() throws PingMeFault {
FaultDetail faultDetail = new FaultDetail();
faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1);
LOG.info("Executing operation pingMe, throwing PingMeFault

exception");
System.out.println("Executing operation pingMe, throwing PingMeFault

exception\n");
throw new PingMeFault("PingMeFault raised by server", faultDetail);

}
}

The GreeterImpl class follows the JAX-WS standard to implement the Greeter port type. In outline,

the preceding code example can be explained as follows:

1. The @jaxws annotation preserves information from the original WSDL contract; specifically recording the

WSDL port type, service name, and port name associated with The GreeterImpl class.

2. The GreeterImpl class provides an implementation of the

org.apache.hello_world_soap_http.Greeter base class, which is generated automatically by

the wsdl2java tool.

3. Each of the operations from the Greeter interface—greetMe, greetMeOneWay, sayHi, and

pingMe—are implemented by the GreeterImpl class. These operation impementations can be called

by Web service clients once the GreeterImpl class has been deployed into a suitable container.

9

Basic Celtix Demonstrations

Chapter 2. Standalone Service
This chapter describes how to build and run a demonstration that illustrates a Web service running in standalone
mode—that is, without needing to be deployed into a container.

Standalone Demonstration
The standalone demonstration is a simple client/server application, where operation invocations are transmitted
over the SOAP/HTTP protocol.

Demonstration location
The CXF standalone demonstration is located in the following directory:

CeltixInstallDir/samples/service_creation/hello_world

Demonstration overview
Figure 2.1, “Overview of the Standalone Demonstration” shows the main components of the standalone
demonstration. This is a straightforward client/server Web service application.

Figure 2.1. Overview of the Standalone Demonstration

10

Standalone server
The server program is a Web service that accepts requests through the SOAP/HTTP protocol. The server’s
WSDL contract is defined in the section called “Greeter Service WSDL” . Because the server is implemented
in standalone mode, you need to program Celtix ASE to create an instance of the service explicitly, as
discussed in the section called “Main Function for a Standalone Service” .

Client
The client program is a standalone Web client, implemented using Celtix ASE. The client implementation
invokes each of the Greeter interface’s operations in sequence: sayHi, greetMe, greetMeOneWay, and

pingMe.

SOAP binding
The SOAP binding for the Greeter service is defined in the WSDL contract, as shown in the section called
“SOAP binding for Greeter” .

HTTP transport
The HTTP transport for the Greeter service is defined in the WSDL contract, as shown in the section called
“HTTP port for Greeter” .

Main Function for a Standalone Service
The Celtix ASE product is capable of running Web services in a standalone mode. In order to run a Celtix
ASE standalone service, you must provide just a few lines of code to define a main() function for the server

program.

Server main() function
Example 2.1, “Server main() Function for the Greeter Service” shows the code for a simple Celtix ASE
main() function. This is all the code that is required to launch the Greeter service as a standalone service.

Example 2.1. Server main() Function for the Greeter Service
package demo.hw.server;

import javax.xml.ws.Endpoint;

11

Standalone Service

public class Server {

protected Server() throws Exception {
System.out.println("Starting Server");

Object implementor = new GreeterImpl();
String address = "http://localhost:9000/SoapContext/SoapPort";
Endpoint.publish(address, implementor);

}

public static void main(String args[]) throws Exception {
new Server();
System.out.println("Server ready...");

Thread.sleep(5 * 60 * 1000);
System.out.println("Server exiting");
System.exit(0);

}
}

The Server.main() function creates a new Server instance and then goes to sleep for five minutes,

giving the background thread a chance to process incoming requests.

The Server() constructor is responsible for launching the Greeter service. It creates a GreeterImpl

instance and then starts the service by calling the Endpoint.publish() method. The publish()

method kicks off a background thread to process incoming requests to the Greeter service and starts listening
on the IP port specified by address.

Build and Run the Standalone Demonstration
Follow the instructions in this section to build and run the CXF standalone demonstration. These instructions
assume that you have already configured your environment as described in the section called “Before You
Start” .

Build the demonstration
Build the standalone demonstration as follows:

1. Open a command prompt and change directory to
CeltixInstallDir/samples/service_creation/hello_world.

2. Enter the following command to build the demonstration:

ant build

12

Standalone Service

The command produces output similar to the following:

Buildfile: build.xml

maybe.generate.code:

generate.code:
[echo] Generating code using wsdl2java...
[mkdir] Created dir:

C:\Programs\Celtix\samples\service_creation\hello_world\build\classes
[mkdir] Created dir:

C:\Programs\Celtix\samples\service_creation\hello_world\build\src
[java] wsdl2java -verbose -d

C:\Programs\Celtix\samples\service_creation\hello_world\build\
src C:\Programs\Celtix\samples\service_creation\hello_world\wsdl/hello_world.wsdl

[java] wsdl2java - 2.0-M1-IONA-SNAPSHOT

[touch] Creating
C:\Programs\Celtix\samples\service_creation\hello_world\build\src\.CODEGEN_
DONE

compile:
[javac] Compiling 16 source files to

C:\Programs\Celtix\samples\service_creation\hello_world
\build\classes

build:

BUILD SUCCESSFUL
Total time: 6 seconds

Building the demonstration consists essentially of two steps:

a. Generating stub code from the hello_world.wsdl file, using the wsdl2java utility.

b. Compiling the application code and the WSDL stub code using the javac compiler.

Run the server
Run the standalone server as follows:

Enter the following command from within the samples/service_creation/hello_world directory

in order to run the server:

ant server

The command produces output similar to the following:

13

Standalone Service

Buildfile: build.xml

maybe.generate.code:

compile:

build:

server:
[java] Starting Server
[java] Server ready...

Run the client
Run the client as follows:

1. Open a new command prompt and change directory to
CeltixInstallDir/samples/service_creation/hello_world.

2. Enter the following command to run the client:

ant client

The command produces output similar to the following:

Buildfile: build.xml

maybe.generate.code:

compile:

build:

client:
[java]

file:/C:/Programs/Celtix/samples/service_creation/hello_world/wsdl/hello_world.wsdl

[java] Invoking sayHi...
[java] Server responded with: Bonjour

[java] Invoking greetMe...
[java] Server responded with: Hello fbolton

[java] Invoking greetMe with invalid length string, expecting
exception...

[java] Invoking greetMeOneWay...
[java] No response from server as method is OneWay

14

Standalone Service

[java] Invoking pingMe, expecting exception...
[java] Expected exception: PingMeFault has occurred: PingMeFault

raised by
server

[java] FaultDetail major:2
[java] FaultDetail minor:1

BUILD SUCCESSFUL
Total time: 3 seconds

15

Standalone Service

Chapter 3. Service in a Servlet
Container
This chapter describes how to build and run a demonstration that illustrates a Web service running in a servlet
container.

Servlet Container Demonstration
The servlet container demonstration shows how to deploy a service into a standard Web server, using a CXF
servlet that acts as an adapter for Web services.

Demonstration location
The servlet container demonstration is located in the following directory:

CeltixInstallDir/samples/service_creation/hello_world

Demonstration overview
Figure 3.1, “Overview of the Servlet Container Demonstration” shows the main components of the servlet
container demonstration.

16

Figure 3.1. Overview of the Servlet Container Demonstration

Web server
The Web server shown in Figure 3.1, “Overview of the Servlet Container Demonstration” can be any Web
server that is capable of acting as a servlet container—for example, Apache Tomcat. When a Web server is
used as the container, all of the hosted services are accessed through the same IP port. For example, the
default IP port for Tomcat is 8080, which gives a base URL of http://Hostname:8080.

Deployed WAR file
The Greeter service is deployed to the Web server as a Web archive (WAR) file. In addition to configuration
files, the WAR file contains the compiled code for the Greeter service, the WSDL stub code, and a copy of
the WSDL contract. For more details about the WAR file, see the section called “Deploying to a Servlet
Container” .

CXF servlet
The CXF servlet is a standard servlet provided by Celtix ASE that acts as an adapter for Web service endpoints.
Each instance of a CXF servlet can host single or multiple service endpoints (see the section called
“cxf-servlet.xml file”). The CXF servlet is part of the Celtix ASE runtime and is implemented by the
org.apache.cxf.jaxws.servlet.CXFServlet class.

17

Service in a Servlet Container

The CXFServlet class is referenced, but not included in the WAR file. There is no need to include it,

because the Web server can extract the CXFServlet class from the Celtix ASE runtime.

Celtix ASE runtime
The Celtix ASE runtime Jars must be accessible to the deployed service. Normally, you would need to perform
specific steps to install the Celtix ASE runtime in the Web server. In the case of the Web server bundled with
Celtix, however, these steps are performed automatically by the Celtix installer at install time.

Greeter service
The application code for the Greeter service is identical to the case of a standalone service—see the section
called “Greeter Service Implementation” . The code is not affected by being deployed into a servlet container.

Although the SOAP binding continues to be used to encode messages, the HTTP port specified in the original
WSDL contract is irrelevant in this scenario. The HTTP protocol layer is now implemented by the Web server,
not the Celtix ASE runtime.

WSDL contract
The original WSDL contract for the service is included in the WAR file. This static copy of the WSDL contract
specifies the binding for the Greeter service. The port address in the WSDL contract is ignored, however.

When the Greeter service is initialized by the servlet container, Celtix automatically updates the in-memory
copy of the WSDL contract with the correct endpoint address. It is this updated copy of the contract that is
sent to clients that query the WSDL contract.

Deploying to a Servlet Container
In order to deploy a service to a servlet container, it is necessary to package all of the relevant files into a
Web archive (WAR) file. The WAR file is a standard format for packaging Web applications.

.war file
The helloworld.war contains the following files and directories:

META-INF/
Manifest.mf

WEB-INF/
wsdl/

hello_world.wsdl

18

Service in a Servlet Container

classes/
*.class

web.xml
cxf-servlet.xml

WSDL contract
The WSDL contract, hello_world.wsdl, is included in the Web archive. The contract specifies a SOAP

binding and a HTTP port, but the address in the HTTP port is ignored. A URL constructed from the servlet
configuration is used instead of the address in the contract—see the section called “URL for Greeter service”
.

Class files
The Web archive includes the class files for the server implementation and the WSDL stub code under the
WEB-INF/classes directory.

web.xml file
The web.xml file instructs Tomcat to load the org.apache.cxf.jaxws.servlet.CXFServlet class.

This servlet plays the role of a service adapter, enabling you to deploy the Greeter service into the Tomcat
Web server.

You do not normally need to edit the contents of the web.xml file. For reference, a copy of the standard

web.xml file is stored in the CeltixInstallDir/etc directory.

cxf-servlet.xml file
The cxf-servlet.xml file is used to configure the endpoints that plug in to the CXF servlet. When the

CXF servlet starts up, it reads the list of endpoint elements in this file and initializes a service endpoint

for each one.

In the current example, the cxf-servlet.xml file contains just a single endpoint element to configure

the Greeter service endpoint, as follows:

<endpoints>

<endpoint
name="hello_world"
interface="org.apache.hello_world_soap_http.Greeter"
implementation="demo.hw.server.GreeterImpl"

19

Service in a Servlet Container

wsdl="WEB-INF/wsdl/hello_world.wsdl"
service="{http://apache.org/hello_world_soap_http}SOAPService"
port="{http://apache.org/hello_world_soap_http}SOAPPort"
url-pattern="/hello_world" />

</endpoints>

URL for Greeter service
When you deploy the Greeter service into a servlet container, the original address specified in the WSDL
contract is ignored and a specially constructed servlet URL is used instead. The constructed URL has the
following general form:

http://Hostname:Port/Context/CXFServletPat/EndpointPat

Where Hostname and Port are the host name and IP port where the Web server listens for incoming HTTP

messages (typically, you can use localhost and 8080 for these values). The servlet Context is normally

equal to the name of the .war file. For example, the helloworld.war file has a context equal to

helloworld. The CXFServletPat pattern is specified by the url-pattern element in the web.xml

file—by default, services. The EndpointPat is determined by the url-pattern attribute in the

cxf-servlet.xml file—by default, hello_world.

Using the typical values and defaults, you get the following URL:

http://localhost:8080/helloworld/services/hello_world

WSDL query URL
Associated with each service endpoint is a query URL that is used to download the service’s WSDL contract.
To obtain the query URL, simply append ?wsdl to the endpoint URL.

For example, the default query URL for the Greeter service is as follows:

http://localhost:8080/helloworld/services/hello_world?wsdl

Clients can use the query URL to download an up-to-date copy of a service’s WSDL contract. Downloading
the WSDL contract is typically necessary, if the server makes dynamic changes to the WSDL contract.

20

Service in a Servlet Container

Build and Run the Servlet Container Demonstration
Follow the instructions in this section to build and run the servlet container demonstration. These instructions
assume that you have already configured your environment as described in the section called “Before You
Start” .

Build the demonstration
Build the servlet container demonstration as follows:

1. Open a command prompt and change directory to
CeltixInstallDir/samples/service_creation/hello_world.

2. Enter the following command to build the .war file for the servlet container:

ant war

The command produces output similar to the following:

Buildfile: build.xml

maybe.generate.code:

compile:

build:

war:
[mkdir] Created dir:

C:\Programs\Celtix\samples\service_creation\hello_world\build\war
[war] Building war:

C:\Programs\Celtix\samples\service_creation\hello_world\build\war\hell
oworld.war

BUILD SUCCESSFUL
Total time: 2 seconds

The result of running this command is a file, helloworld.war, which is stored in the

hello_world/build/war subdirectory.

Deploy the .war file
To deploy the .war file, copy the helloworld.war file to the Tomcat webapps directory, as follows:

21

Service in a Servlet Container

Windows:

> copy CeltixInstallDir\samples\service_creation\hello_world\build\war\helloworld.war
CeltixInstallDir\containers\servlet\webapps

UNIX:

% cp CeltixInstallDir/samples/service_creation/hello_world/build/war/helloworld.war
CeltixInstallDir/containers/servlet/webapps

Start the Web server
To start the Tomcat Web server, enter the following command:

Windows:

> tomcat_start

UNIX:

% tomcat_start.sh

As the Tomcat server starts up, it automatically loads and deploys the helloworld.war file from the

webapps directory.

Run the client
To run the client using ant, you need to provide the base URL of the deployed servlet as a parameter. The

base URL is simply an URL of the form http://Hostname:Port that accesses the Tomcat root page.

For example, if the base URL is http://localhost:8080, you can run the client with the following ant

command:

ant client-servlet -Dbase.url=http://localhost:8080

Alternatively, instead of using the ant command, you can run the client directly using the java command.

Assuming that the ./build/classes directory is on your CLASSPATH, you can change directory to the

samples/service_creation/hello_world directory and enter the following command:

Windows:

> java -Djava.util.logging.config.file=%CELTIX_HOME%\etc\logging.properties
demo.hw.client.Client http://localhost:8080/helloworld/services/hello_world?wsdl

UNIX:

22

Service in a Servlet Container

% java -Djava.util.logging.config.file=$CELTIX_HOME/etc/logging.properties
demo.hw.client.Client http://localhost:8080/helloworld/services/hello_world?wsdl

In this case, the parameter provided to the client is the WSDL query URL for the Greeter service, not just
the base URL. This command produces output similar to the following:

http://localhost:8080/helloworld/services/hello_world?wsdl
Invoking sayHi...
Server responded with: Bonjour

Invoking greetMe...
Server responded with: Hello fbolton

Invoking greetMe with invalid length string, expecting exception...

Invoking greetMeOneWay...
No response from server as method is OneWay

Invoking pingMe, expecting exception...
Expected exception: PingMeFault has occurred: PingMeFault raised by
server
FaultDetail major:2
FaultDetail minor:1

23

Service in a Servlet Container

Chapter 4. Service in a JBI Container
This chapter describes how to build and run a demonstration that illustrates a Web service running in a JBI container.

JBI Container Demonstration
The JBI container demonstration shows how to deploy a service into a JBI container. Celtix provides a
dedicated JBI service engine that enables services to plug in to the JBI container.

Demonstration location
The JBI container demonstration is located in the following directory:

CeltixInstallDir/samples/service_creation/integration/JBI/internal_provider_external_consumer

Demonstration overview
Figure 4.1, “Overview of the JBI Container Demonstration” shows the main components of the JBI container
demonstration.

24

Figure 4.1. Overview of the JBI Container Demonstration

Normalized message router
The normalized message router (NMR) is the core element of a JBI container. It is responsible for routing
all messages between deployed JBI components. Messages sent through the router are always formatted as
normalized messages.

The basic idea of an NMR is that all communication between deployed components occurs using normalized
messages, which have an XML format closely modelled on the original WSDL message descriptions.
Consequently, an NMR is a highly-optimized bus for the exchange of messages between Web services. For
a service described in WSDL, the processing typically required to construct a normalized message is absolutely
minimal.

CXF service engine
A service engine (SE) is a JBI component that enables you to deploy services (or service providers in JBI
terminology) and client programs (or service consumers in JBI terminology).

25

Service in a JBI Container

The CXF service engine is an SE that has been specifically designed to facilitate the deployment of Celtix
ASE services in the JBI container. The CXF service engine is available as part of the Celtix ASE runtime.

SOAP+HTTP binding
Communication with external Web service clients is enabled by the Apache Incubator ServiceMix SOAP+HTTP
binding component. In contrast to the Celtix ASE standalone demonstration (see Chapter 2, Standalone
Service), the JBI container demonstration does not use Celtix ASE’s built-in SOAP binding and HTTP
transport. Instead, request messages are received by the ServiceMix SOAP+HTTP binding component and
then routed to the CXF service engine through the NMR. Reply messages follow the reverse route.

Service unit
A service unit is the basic functional unit of a user application. For example, a service unit can encapsulate
a service provider or a service consumer. A service unit can also be used to encapsulate configuration details
for a target component—for example, as shown in Figure 4.1, “Overview of the JBI Container Demonstration”
, the binding-su service unit is used to configure the ServiceMix SOAP+HTTP binding.

WSDL contract for the client side
In this scenario, the client program has a WSDL contract that differs from the WSDL contract used on the
server side. The client WSDL contract configures the client to use a SOAP binding and a HTTP transport.
The server WSDL contract, on the other hand, configures the Greeter service to use a binding and transport
for sending and receiving normalized messages—see the section called “xformat binding” for details.

The JBI Service Assembly
In order to deploy a service to a JBI container, it is necessary to package all of the relevant files into a service
assembly file. The service assembly is essentially an aggregation of one or more service units.

Service assembly archive
Figure 4.2, “Example of a JBI Service Assembly” shows an overview of the service assembly archive used
for the current demonstration. The archive is packaged as a .zip file and consists of two service units and

a deployment descriptor, jbi.xml.

26

Service in a JBI Container

Figure 4.2. Example of a JBI Service Assembly

Service assembly deployment descriptor
The service assembly deployment descriptor, jbi.xml, consists of a sequence of service unit descriptions.

For each service unit, the descriptor specifies the constituent files and indicates which target JBI component
the service should be deployed into. In the current scenario, two service units are provided, as follows:

• Greeter service unit—deployed into the CXF service engine, and

• binding-su service unit—deployed into the ServiceMix SOAP+HTTP binding component.

Service unit for the Greeter service
The service unit for the Greeter service contains the following parts:

• jbi.xml deployment descriptor—this deployment descriptor is consumed by the CXF service engine,

which is responsible for instantiating and activating the Greeter service.

• Greeter service implementation—the class files that implement the Greeter service, including WSDL stub
code.

• WSDL contract—the server-side copy of the contract is defined to use the xformat binding and the jbi

transport, which are designed to receive and send messages in normalized message format.

27

Service in a JBI Container

xformat binding
The xformat binding is a special binding type that marshals request and reply messages in the normalized

message format. Example 4.1, “xformat Binding Element for the Greeter Service” shows the xformat

binding used for the Greeter service deployed in the CXF service engine.

Example 4.1. xformat Binding Element for the Greeter Service
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world"
xmlns:x1="http://apache.org/hello_world/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xformat="http://cxf.apache.org/bindings/xformat"
xmlns:jbi="http://apache.org/transport/jbi">

...

<wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
<xformat:binding />

<wsdl:operation name="sayHi">
<wsdl:input name="sayHiRequest" />
<wsdl:output name="sayHiResponse" />

</wsdl:operation>

<wsdl:operation name="greetMe">
<wsdl:input name="greetMeRequest" />
<wsdl:output name="greetMeResponse" />

</wsdl:operation>

<wsdl:operation name="greetMeOneWay">
<wsdl:input name="greetMeOneWayRequest" />

</wsdl:operation>

<wsdl:operation name="pingMe">
<wsdl:input />
<wsdl:output />
<wsdl:fault name="pingMeFault" />
</wsdl:operation>

</wsdl:binding>

28

Service in a JBI Container

jbi transport
The jbi transport is responsible for interfacing with the NMR, passing messages back and forth in normalized

message format. Example 4.2, “jbi Endpoint for the Greeter Service” shows the definition of the jbi endpoint

for the Greeter service.

Example 4.2. jbi Endpoint for the Greeter Service
<wsdl:service name="HelloWorldService">

<wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jbi:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

Service unit for the SOAP+HTTP binding
The service unit for the SOAP+HTTP binding contains a single file, xbean.xml, which configures a

SOAP/HTTP endpoint that exposes the Greeter service to external consumers.

xbean.xml file
Example 4.3, “Configuration of the SOAP+HTTP Binding Component” shows the contents of the xbean.xml

file which configures the SOAP+HTTP binding to open a HTTP listening port and route incoming requests
to the Greeter service.

Example 4.3. Configuration of the SOAP+HTTP Binding Component
<beans xmlns:http="http://servicemix.apache.org/http/1.0"

xmlns:demo="urn:servicemix:soap-binding"
xmlns:sns1="http://apache.org/hello_world">

<http:endpoint service="sns1:HelloWorldService"
endpoint="SoapPort"
interfaceName="sns1:Greeter"
role="consumer"
locationURI="http://localhost:9000/"
defaultMep="http://www.w3.org/2004/08/wsdl/in-out"

soapVersion="1.1"
soap="true"
/>

</beans>

29

Service in a JBI Container

Build and Run the JBI Container Demonstration
Follow the instructions in this section to build and run the JBI container demonstration. These instructions
assume that you have already configured your environment as described in the section called “Before You
Start” .

Build the demonstration
Build the servlet container demonstration as follows:

1. Open a command prompt and change directory to
CeltixInstallDir/samples/service_creation/integration/JBI/internal_provider_external_consumer.

2. Enter the following command at the command prompt:

ant build

Start ServiceMix
Start and prepare the ServiceMix JBI container as follows:

1. Enter the following command to start Apache Incubator ServiceMix (in the directory
internal_provider_external_consumer):

Windows:

servicemix_start

UNIX:

servicemix_start.sh

ServiceMix should produce output similar to the following:

servicemix.bat: Ignoring predefined value for SERVICEMIX_HOME
Starting Apache ServiceMix ESB: 3.0-incubating

Loading Apache ServiceMix from servicemix.xml on the CLASSPATH
INFO - ConnectorServerFactoryBean - JMX connector available
at: service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
INFO - JBIContainer - ServiceMix 3.0-incubating
JBI Container
(ServiceMix) is starting
INFO - JBIContainer - For help or more informations

30

Service in a JBI Container

please see: http://incubator.apache.org/servicemix/
INFO - ComponentMBeanImpl - Initializing component:
#SubscriptionManager#
INFO - DeploymentService - Restoring service assemblies
INFO - JBIContainer - ServiceMix JBI Container
(ServiceMix) started

During start-up, ServiceMix creates the following subdirectories, under the
CeltixInstallDir/containers/jbi directory:

• data

• deploy

• install

2. Open a new command prompt and change directory to
CeltixInstallDir/samples/service_creation/integration/JBI/internal_provider_external_consumer.

3. Deploy the ServiceMix shared component by copying the relevant zip file to the ServiceMix deploy

directory, as follows:

Windows:

> copy
%CELTIX_HOME%\containers\jbi\components\servicemix-shared-3.0-incubating-installer.zip
%CELTIX_HOME%\containers\jbi\deploy

UNIX:

% cp
$CELTIX_HOME/containers/jbi/components/servicemix-shared-3.0-incubating-installer.zip
$CELTIX_HOME/containers/jbi/deploy

Where it is assumed that the ServiceMix container is running in the
internal_provider_external_consumer directory. The running ServiceMix container should

produce output similar to the following:

INFO - AutoDeploymentService - Directory: deploy: Archive
changed: processing servicemix-shared-3.0-incubating-installer.zip ...
INFO - AutoDeploymentService - Directory: deploy: Finished
installation of archive: servicemix-shared-3.0-incubating-installer.zip

31

Service in a JBI Container

4. Deploy the ServiceMix SOAP/HTTP binding component by copying the relevant zip file to the ServiceMix
deploy directory, as follows:

Windows:

> copy
%CELTIX_HOME%\containers\jbi\components\servicemix-http-3.0-incubating-installer.zip
%CELTIX_HOME%\containers\jbi\deploy

UNIX:

% cp
$CELTIX_HOME/containers/jbi/components/servicemix-http-3.0-incubating-installer.zip
$CELTIX_HOME/containers/jbi/deploy

The running ServiceMix container should produce output similar to the following:

INFO - AutoDeploymentService - Directory: deploy: Archive
changed: processing servicemix-http-3.0-incubating-installer.zip ...
INFO - jetty - Logging to
org.apache.servicemix.http.jetty.JCLLogger@6e56ae
via org.apache.servicemix.http.jetty.JCLLogger
INFO - ComponentMBeanImpl - Starting component: servicemix-http
INFO - ComponentMBeanImpl - Initializing component:
servicemix-http

INFO - AutoDeploymentService - Directory: deploy: Finished
installation of archive: servicemix-http-3.0-incubating-installer.zip

5. Deploy the ServiceMix JMS binding component by copying the relevant zip file to the ServiceMix deploy

directory, as follows:

Windows:

> copy
%CELTIX_HOME%\containers\jbi\components\servicemix-jms-3.0-incubating-installer.zip
%CELTIX_HOME%\containers\jbi\deploy

UNIX:

% cp
$CELTIX_HOME/containers/jbi/components/servicemix-jms-3.0-incubating-installer.zip
$CELTIX_HOME/containers/jbi/deploy

The running ServiceMix container should produce output similar to the following:

INFO - AutoDeploymentService - Directory: deploy: Archive
changed: processing servicemix-jms-3.0-incubating-installer.zip ...

32

Service in a JBI Container

INFO - ComponentMBeanImpl - Starting component: servicemix-jms
INFO - ComponentMBeanImpl - Initializing component:
servicemix-jms
INFO - AutoDeploymentService - Directory: deploy: Finished
installation of archive: servicemix-jms-3.0-incubating-installer.zip

6. Enter the following command to install and start the CXF Service Engine:

Windows:

> servicemix_install_ca
%CELTIX_HOME%\samples\service_creation\integration\JBI\internal_provider_external_consumer\service-engine\build\lib\cxf-service-engine.jar

UNIX:

% servicemix_install_ca.sh
$CELTIX_HOME/samples/service_creation/integration/JBI/internal_provider_external_consumer/service-engine/build/lib/cxf-service-engine.jar

Deploy and start the service assembly
Enter the following command to deploy and start the service assembly:

Windows:

> servicemix_deploy_sa
%CELTIX_HOME%\samples\service_creation\integration\JBI\internal_provider_external_consumer\service-assembly\build\lib\cxf-service-assembly.zip

UNIX:

% servicemix_deploy_sa.sh
$CELTIX_HOME/samples/service_creation/integration/JBI/internal_provider_external_consumer/service-assembly/build/lib/cxf-service-assembly.zip

Run the client
To run the client, enter the following command (from the directory
internal_provider_external_consumer):

ant client

This command produces output similar to the following:

Buildfile: build.xml

client:

client:

33

Service in a JBI Container

[java]
file:/C:/Programs/Celtix/samples/service_creation/integration/JBI/internal_provider_external_consumer/service-unit/./wsdl/hello_world_client.wsdl

[java] Invoking sayHi...
[java] Server responded with: Bonjour

[java] Invoking greetMe...
[java] Server responded with: Hello YourName

BUILD SUCCESSFUL
Total time: 6 seconds

Undeploy the service assembly
Enter the following command to undeploy the service assembly (from the directory
internal_provider_external_consumer):

Windows:

> servicemix_undeploy_sa cxf-service-assembly.zip

UNIX:

% servicemix_undeploy_sa.sh cxf-service-assembly.zip

34

Service in a JBI Container

	Getting Started with Celtix Enterprise
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Celtix Enterprise Library
	Getting the Latest Version
	Searching the Celtix Enterprise Library
	Additional IONA Resources
	Open Source Project Resources
	Document Conventions

	Chapter 1. Basic Celtix Demonstrations
	Before You Start
	Getting Started Demonstrations
	Greeter Service WSDL
	Greeter Service Implementation

	Chapter 2. Standalone Service
	Standalone Demonstration
	Main Function for a Standalone Service
	Build and Run the Standalone Demonstration

	Chapter 3. Service in a Servlet Container
	Servlet Container Demonstration
	Deploying to a Servlet Container
	Build and Run the Servlet Container Demonstration

	Chapter 4. Service in a JBI Container
	JBI Container Demonstration
	The JBI Service Assembly
	Build and Run the JBI Container Demonstration

