[image: image1.wmf]

1 Objectives

IONA’s Jumpstart Program is a “sandbox environment”, which can be dropped into a customer environment, enabling the delivery of a Government-specific demonstration and possible POC projects built on top of a pre-assembled infrastructure. The idea is to implement this sandbox environment as a “virtual appliance”, which is a pre-built, pre-configured and ready-to-run set of software applications, packaged with the operating system inside a virtual machine (see http://www.vmware.com/vmtn/appliances/).

The following components will be inside the virtual appliance:

· Operating System (Linux, version tbd.)

· A collection of all IONA open source packages, pre-installed and pre-configured

· A selection of additional IONA software (closed source), to complement the open source offerings, where required- A Federal use case, implemented on top of this environment. The use case will consist of a number of services and orchestrations thereof.

The initial build out of Jumpstart will be a first prototype of this sandbox environment, and to devise facilities, communication mechanisms, and processes so that it can be built out over time, and grown incrementally by individual contributors.

2 Technical Requirements

This document covers the Technical Requirements for the Federal Use Case. The use case is a generic description of locatable entities that can be monitored and dispatched if necessary to a given location. For Federal purposes, a Fleet tracking/Command and Control system has been overlaid on top of this core functionality but it can be applied to other industry use cases such as Emergency Management, Delivery or Limousine Dispatch Services, etc. This document serves as the blueprint for actual Technical Requirements document, which would include additional information on the specific domain.

3 Constraints

3.1 Standards

As the goal of the program is to speed adoption of SOA development, this program will utilize web services to facilitate this. WSDL, SOAP, JAX-WS will be heavily exploited in this prototype. In order to be more acceptable and familiar with the Federal Information Technology community as well as to leverage existing and ongoing work in the semantic portion of the project, it is recommended that subsequently the NIEM (National Information Exchange Model) be used in this program.

3.2 Technical Environment

Open Source Software (OSS) must be used extensively for this program, mainly:

· Linux Operating System

· Apache Celtix Fire (CXF)

· SOA Tools Platform (STP)

· Google Maps

When OSS products are not available for a particular feature, IONA Closed Source Software (CSS) offerings may be used.

4 Definitions

· Direction: the direction where an entity is heading. This consists of N, NW, NE, S, SW, SE

· Tracker/Dispatcher: the central service that manages (overlooks and deploys) and reports on entities.

· Asset: any of the entities managed by the tracker/dispatcher. This can be the fleet, opponents, foreign objects, etc.

· Geospatial distance: Absolute distance between two points in geospatial coordinates.

· Position: determines the location of an entity using geospatial coordinates (longitude, latitude and height /depth)

· Speed: determines the change of position and direction over a period of time. Since it modifies both, it is represented as a vector (magnitude and direction).

· Temporal distance: actual time taken to go between two points. It must include the time taken to go around obstacles such as buildings, mountains, streets, traffic, etc.

5 Functional requirements

The system must fulfill the following technical requirements:

Command Center/Dispatcher

· Track entities: The Dispatcher must be able to retrieve entity’s location based on several criteria, mainly but not limited to the proximity to a given position. Proximity can be defined in terms of geospatial or temporal distance. The Dispatcher may obtain entities according to proximity to a given coordinate and according to a set of criteria that can be used to filter the entities. The list is ordered according to geospatial or temporal proximity. The entities must also be displayed on a visual like a map to provide the Dispatcher a visual perspective of the location and proximity of each entity. The Dispatcher may have the ability to create reports based on entity’s location.

· Deploy entity: The Dispatcher may request one or several entities to deploy to a given location. For the time being, we assume that each entity deploys without providing acknowledgement to the dispatcher.

· Report position change: in order to keep the position information accurate, the entities need to report their location on a regular basis. They must also report direction and speed that can be used to roughly interpolate the entity location in-between reports. An entity that fails to report after a given grace period is no longer reported to the dispatcher.

· Aggregate entities: entity information may come from different sources. This should transparent to the Dispatcher when it comes to searching for entities. Nevertheless, the source itself could be one more criteria for the entity search.

· Maintain metadata: Either the dispatcher or the entity itself may maintain any of its metadata.

· Relay Threat Data: The Dispatcher interrogates incoming location messages, and if identified as a threat, the message may be augmented and sent to various communities of interest (Joint Forces, decision center, etc)

Decision Center/Orchestrator

· Calculate collisions: The Decision Center receives two entities position, direction and speed and determines where and when collision will occur. It returns location and time of collision

· Report Weather: The Decision Center determines weather conditions based upon entity’s position, direction and speed. It utilizes 15-minute increments. For example, when a message is received, it will send back weather conditions based on entity’s location 15 minutes ahead.

· Report Obstacles: The Decision Center can also query tables, maps, etc for any terrain or opposition obstacles that could be in the present entity’s path (based on direction, speed and position). It will send obstacle information to the decision center for processing.

6 Non-functional requirements

The system must meet the following non-functional requirements:

· Scalability: No requirements as of date

· Security: Location information being pushed to the command center by various entities must be verified.

· Performance: No requirements as of date

· Availability: No requirements as of date

· Storage capacity: No requirements as of date

· Safety: No requirements as of date

IONA Technologies Inc, 200 West Street, Waltham, MA 02451

T: 781 902 8000 / 800 672 4948 | F: 781 902 8001 | info@iona.com | www.iona.com

