
1Introduction © IONA Technologies 2007

Introduction
Michelle Davis

Sr. Solutions Architect

1 / 289

Introduction 2© IONA Technologies 2007

Overview
Through this Tutorial, one will learn:

- Introduction to web services
- Core web services technologies (XML, XSD, WSDL and

SOAP) overview
- How to use these core technologies .

- Overview of Celtix, the open-source SOA infrastructure
- Celtix installation and environment
- How to program web services clients and servers using

JAX-WS and Celtix
- Celtix Flexibility (multiple payloads, transport and

communications model support
- Deployment with Celtix

- IONA Jumpstart building blocks

2 / 289

Introduction 3© IONA Technologies 2007

Audience
n The material is directed at those responsible for:

- Analyzing IT problems; and,
- Implementing web services solutions.

n As such, the course is suitable for:
- Enterprise Architects;
- Solution Architects; and
- Software Developers

3 / 289

1Core Web Services Technologies © IONA Technologies 2007

Core Web Services Technologies

4 / 289

Core Web Services Technologies 2© IONA Technologies 2007

Introduction
n XML, XSD, WSDL, SOAP and UDDI are the core

technologies behind web services.

n These technologies are used for integration and interfacing:
- They are not application development technologies
- Developers still develop in existing or new software development

environments

n These technologies make it easier to tie together existing or
planned software components (services).

- This is due to the language-, platform-, OS-, and hardware-neutral
characteristics of the standards

n Web services technologies provide one way to implement the
interfaces and messages for a service-oriented architecture

5 / 289

Core Web Services Technologies 3© IONA Technologies 2007

Introduction (cont’)
n This session shows where and how XML, XSD, WSDL, SOAP

and UDDI fit in the web services technology stack.
- At the end of this session, you will have the “big picture” of web

services.

n A high-level overview will be given for each technology in turn.

6 / 289

Core Web Services Technologies 4© IONA Technologies 2007

Web services technology stack

XML

XSD

WSDL SOAP

UDDI

A markup language
for arbitrary
structured data

A document
definition
language used to
define XML
documents

A messaging
protocol for XML
documents.

An XML-based
service definition
language

A standard describing how
WSDL contracts can be
stored and retrieved

7 / 289

Core Web Services Technologies 5© IONA Technologies 2007

Terminology
n XML (eXtensible Mark-up Language)

- A plain-text notation for describing complex data.

n XSD (XML Schema Definition)
- Defines the format of XML documents.

n WSDL (Web Services Description Language)
- Defines the logical and physical interface of the service, that is, what

the service does and how you can access it.

n SOAP (Simple Object Access Protocol)
- A protocol for sending and receiving XML messages in both

synchronous and asynchronous fashion
- Defines how to format XML documents for transmission

n UDDI (Universal Description, Discovery and Integration)
- One way to advertise and discover services; not universally adopted

8 / 289

Core Web Services Technologies 6© IONA Technologies 2007

XML (eXtensible Markup Language)
n XML is a derivative of SGML in the family of markup

languages; it is a full and evolving W3C standard.

n It is similar to HTML in appearance, but has a very different
goal:

- HTML focuses on the presentation and “style” of data.
- XML focuses on the structure and content of the data.

n It is a parsable, extensible and self-describing text format for
storing and exchanging information

- XML is platform-, hardware, and programming-language neutral.
- XML is highly portable across heterogeneous networks.

n XML is the technology on which WSDL and SOAP are based.

n Reference: http://www.w3.org/XML

9 / 289

http://www.w3.org/XML

Core Web Services Technologies 7© IONA Technologies 2007

An example XML document
n An example XML document is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<Address>

<Street>123 Main Street</Street>
<City>AnyCity</City>
<State>AnyState</State>
<ZIP>12345</ZIP>

</Address>

n Key features to note are:
- XML structures data as elements, using tags, like <Address> and
<Street> to delimit the element’s data.

- Elements can be nested as required to describe complex data.
- The information is stored and transmitted in plain-text in a readable

form.

10 / 289

Core Web Services Technologies 8© IONA Technologies 2007

XSD (XML Schema Definition)
n XSD is used to define the contents of an XML document.

n For example, the XML document on the previous slide is
defined by the following schema.

<schema...>
<complexType name="Address">

<sequence>
<element name="Street" type="string"/>
<element name="City" type="string"/>
<element name="State" type="string"/>
<element name="ZIP" type="string"/>

</sequence>
</complexType>

<schema>

11 / 289

Core Web Services Technologies 9© IONA Technologies 2007

WSDL
n WSDL is simply XML that describes a service: it gives the

logical description of the interface and its physical location.
- Logical: what a service does; its data-types, messages, operations and

interfaces.
- Physical: how a service is accessed; its protocol-bindings and service-

endpoints.

n WSDL acts as the “service contract” between a service
provider and consumer

n WSDL contracts are typically quite verbose and difficult to
read.

- The next slides shows a pseudo-code version of a WSDL contract.

WSDL Contract

Logical part

Physical part

12 / 289

Core Web Services Technologies 10© IONA Technologies 2007

logical vs. physical contracts

interface StockQuoteService
{

float getStockQuote(String symbol)
throws StockQuoteServiceFault;

String getStockDescription(String symbol)
throws StockQuoteServiceFault;

String[] getStockSymbols()
throws StockQuoteServiceFault;

}

fault StockQuoteServiceFault {
string message;
string errorCode;

}
Protocol binding: SOAP
Endpoint: http://frodo:8080/StockQuotes

Logical: data-
types, messages,
operations and
interfaces.

Physical: protocol
bindings and
service endpoints.

13 / 289

Core Web Services Technologies 11© IONA Technologies 2007

WSDL-derived APIs
n A language specific application programmers interface (API)

is derived from the logical contract.
- The API is derived automatically using a code generation tool.
- WSDL code generators exist for many languages:

- Java, .Net (C#, J#, Visual Basic), C++, ...

n Using this API, a developer can implement a service.

<<process>>
:Service

Interface
Contract-derived API

WSDL Contract
<<generated from>>

14 / 289

Core Web Services Technologies 12© IONA Technologies 2007

WSDL-derived APIs (cont’)
n In a similar fashion, a client-side API is derived from the

contract.

n Using this API, a developer can implement a client.

<<process>>
:Service

Interface
Contract-derived API

WSDL Contract

<<process>>
:Consumer

Contract-derived API

<<generated from>>

15 / 289

Core Web Services Technologies 13© IONA Technologies 2007

WSDL benefits: decoupling
n Note that the consumer does not need to know anything about

how the service is implemented.
- All of the information required to use the service is contained in the

contract.
- The separation of interface from implementation is at the heart of SOA.

<<process>>
:Service

Interface
Contract-derived API

WSDL Contract

<<process>>
:Consumer

Contract-derived API

Separation of concerns

16 / 289

Core Web Services Technologies 14© IONA Technologies 2007

WSDL: deployment
n At runtime, the service reads endpoint information from the

physical part of the contract.
- For example, “listen for SOAP/HTTP requests on port 8080”.

n The client also reads endpoint information from the physical
part of the contract.

- For example: “send requests to port 8080 using SOAP/HTTP”.

<<process>>
:Service

Interface

WSDL Contract

<<process>>
:Consumer

<<read>> <<read>>

17 / 289

Core Web Services Technologies 15© IONA Technologies 2007

<<computer>>
samwise:

WSDL: deployment (cont’)
n The client and server can now communicate.

- In the diagram below, the service is deployed on a computer called
“samwise”

- The service listens on port 8080 for SOAP/HTTP traffic.

<<process>>
:Service

Interface

<<process>>
:Consumer

SOAP/HTTP

8080

Request Message

Response Message

18 / 289

Core Web Services Technologies 16© IONA Technologies 2007

SOAP (Simple Object Access Protocol)
n SOAP is an XML-based communication protocol.

n SOAP was originally intended to provide a simple protocol to
access distributed objects.

- SOAP is no-longer simple or object-oriented.
- “Complex Service Access Protocol” might be a more appropriate name.

n When a SOAP client or server sends a message, it wraps the
XML content in an outer XML document.

- A SOAP message is simply an XML document that provides a
messaging wrapper around the XML payload.

n The message has an Envelope element that identifies the
message boundary and includes:

- an optional Header element (containing meta-data, system-level data
or other auxiliary information); and

- a Body element, containing the XML payload.

19 / 289

Core Web Services Technologies 17© IONA Technologies 2007

Structure of a SOAP message
n A sample SOAP wrapper for the XML document we showed

earlier is given below.
<?xml version="1.0"?>
<soap:Envelope>

<soap:Header>
... ...

</soap:Header>
<soap:Body>

<Address>
<Street>123 Main Street</Street>
<City>AnyCity</City>
<State>AnyState</State>
<ZIP>12345</ZIP>

</Address>
</soap:Body>

</soap:Envelope>

20 / 289

Core Web Services Technologies 18© IONA Technologies 2007

UDDI
n UDDI (Universal Description, Discovery and Integration) is a

standard for publishing and searching for WSDL contracts.

n UDDI is like a “yellow pages” for web services, supporting the
ability to register and find services on the internet.

- Service providers publish their services’ WSDL contracts, along with
searchable attributes.

- Potential clients search UDDI registries to retrieve WSDL suiting their
service needs.

n Note: UDDI is the least accepted of the SOAP, WSDL and
UDDI trio of technologies.

- The ebXML standard from OASIS may replace UDDI.

n Resource: http://www.uddi.org

21 / 289

http://www.uddi.org

Core Web Services Technologies 19© IONA Technologies 2007

<<wsdl repository>>
:UDDI

UDDI
n UDDI repositories provide a storage and lookup facility for

WSDL contracts.

<<process>>
:Service

Interface

WSDL Contract

<<process>>
:Consumer

22 / 289

Core Web Services Technologies 20© IONA Technologies 2007

Summary
n Web Services are underpinned by a set of XML technologies:

WSDL, SOAP and UDDI.

n WSDL is used to define the messages a server will receive
and transmit, and provide the network address of the server

n SOAP is used to provide a standardised wrapper around XML
message information.

n UDDI is used to distribute and share WSDL contracts.

23 / 289

1Web Services Introductory Demo © IONA Technologies 2007

Web Services Introductory
Demo

24 / 289

Web Services Introductory Demo 2© IONA Technologies 2007

Introductory demo
n In this session, the instructor will guide you through a live web-

services demo.
- The demo web service runs on the instructor’s computer;
- If time permits (and a network is available) then the instructor may access live

web-services available on the internet.

n In this demo, you will see:
- The web service’s “contract”, in both pseudo- and raw-WSDL form;
- How a client (written in Java) can access the web service;
- How the client and server communicates through the use of plain-text,

human-readable XML messages;
- How a dynamic browser-based client (SOAPUI) can access the web service.

25 / 289

Web Services Introductory Demo 3© IONA Technologies 2007

Starting the web service
n The stock-quote web service has been implemented using the

Java programming language and Celtix, an open-source ESB.
- The web service part of the Celtix Exercise System.

n A number of pre-requisites are required:
- Java (JDK 1.5.07 or higher)
- Celtix (1.0 or higher)
- Ant (1.6.2 or higher)
- SOAPUI (1.6 or higher)

n From a suitably configured shell, the instructor will start the web
service using “stock-quote-service”

n The server starts, and listens for HTTP traffic. You should see a
message :
Listening for requests...

26 / 289

Web Services Introductory Demo 4© IONA Technologies 2007

Viewing the web service contract
n The instructor will import the WSDL contract into the SOAPUI

viewer.
- Demo contracts can be found in the wsdl directory of the main stock-quote

demo directory.

n The viewer allows you to view the interface in an abbreviated
“pseudo” view, listing the operations available.

- Using SOAP UI, you can create sample request messages, send them to the
service, and view the response.

- You can also perform load-testing and analysis of the service.

27 / 289

Web Services Introductory Demo 5© IONA Technologies 2007

A Java client
n The client is run with the script “stock-quote-client”

n To demonstrate the web service’s programmatic interface, the
instructor will modify the Java class file
src/stockquote/Client.java.

- The variable stockQuoter is a “stub” that connects to the server.
- The methods getStockDescription(), getStockQuote() and
getStockSymbols() can be used.

n When the client is run, you will see that the server writes to the
console on every method invocation.

28 / 289

Web Services Introductory Demo 6© IONA Technologies 2007

Summary
n Web services technologies are XML-oriented:

- Services are defined using WSDL; and
- Messages are typically sent using the SOAP protocol over HTTP.

n WSDL allows you to separate interface from implementation.
- Web services (and clients) can be implemented and deployed using popular

languages such as Java, C++ and C#.
- Web services can be implemented on many different operating systems and

hardware architectures.

29 / 289

1Celtix Project Overview © IONA Technologies 2007

Celtix Project Overview

30 / 289

Celtix Project Overview 2© IONA Technologies 2007

Overview
n This session introduces Celtix

- Celtix Enterprise: an open source Java Enterprise Service Bus (ESB)
- Built around Apache CXF, supported by IONA Technologies

- CXF Project website: http://cwiki.apache.org/CXF/
- IONA: http://www.iona.com/celtix

- The Celtix communication stack
- The benefits of supporting multiple payloads and transports

- Celtix Use Cases
- Celtix Communication Models

- Celtix supports a variety of communication models, including one-way,
request-response, asynchronous messaging and publish-subscribe.

- Celtix Deployment
- Celtix can be deployed as standalone client/server, within a J2EE

application server, servlet engine, spring container or Java Business
Integration (JBI) container.

31 / 289

http://cwiki.apache.org/CXF/
http://www.iona.com/celtix

3Celtix Project Overview © IONA Technologies 2007

What is Celtix?

32 / 289

Celtix Project Overview 4© IONA Technologies 2007

What is Celtix?
n Celtix is an open-source Java Enterprise Service Bus (ESB)

n Celtix combines a number of open-source SOA-infrastructure
projects into one integrated, tested and certified package.

- CXF – Core ESB functionality
- ActiveMQ – JMS Broker
- Mule – Routing
- Spring – Service container
- Tomcat – Servlet container
- ServiceMix – JBI container
- Qpid – AMQP Broker

n Use Celtix for:
- Designing, developing and deploying Web Services in Java and scripting

languages such as E4XML.
- Applications involving transmission, routing and transformation of XML

messages.

33 / 289

Celtix Project Overview 5© IONA Technologies 2007

History
n Celtix was originally hosted by ObjectWeb, an open-source

foundation that focuses on middleware technology.

n Celtix moved to Apache in 2006, was merged with the XFire
project, and was renamed CeltiXFire

- The name was subsequently changed to CXF
- CXF project website: http://cwiki.apache.org/CXF/
- IONA Technologies is a major contributor to both CXF and the original Celtix

project.

n IONA uses the name “Celtix Advanced Service Engine” for its
certified distribution of CXF.

- See: http://www.iona.com/products/celtix/
- Celtix Enterprise includes the advanced service engine, advanced messaging

(AMQP).

34 / 289

http://cwiki.apache.org/CXF/
http://www.iona.com/products/celtix/

Celtix Project Overview 6© IONA Technologies 2007

Building service-oriented applications with Celtix
n Celtix abstracts away the details of inter-process communication

between services and consumers.

n The service’s contract is defined using WSDL (Web Services
Description Language)

- This contract is mapped to a semantically equivalent Java API in a
standardized way

n Using WSDL as an interface language offers a number of benefits:
- Programming language neutral: uses XML schema for type definition
- Separates the logical interface (what a server does) from the physical

interface (how to communicate with the server)
- Services can support multiple communication protocols
- Separates the service implementation from the service description
- Services can be implemented in any language, OS or hardware.
- Widely supported by the industry

35 / 289

7Celtix Project Overview © IONA Technologies 2007

The Celtix Communication Stack

36 / 289

Celtix Project Overview 8© IONA Technologies 2007

The Celtix communication stack
n Celtix provides a layered communication stack to services and

consumers.

Component (service consumer / provider)

JAX-WS

XML SOAP Other…

WS-RM, Routing,
Security,

Transaction,
Transformations

TCP, HTTP, JMS, …

Binding

Message Handlers

Transport

Contract-derived
API

Network

Celtix Enterprise

37 / 289

Celtix Project Overview 9© IONA Technologies 2007

The Celtix communication stack (cont’)
n When a component sends a message to a service, it uses a Java

API derived from the WSDL contract
- The JAX-WS mapping is used.
- The Java API is protocol neutral.

n A Celtix binding creates the message payload
- Pure XML, SOAP, JSON, or some other message format.

n Quality-of-service extensions can be added using message
handlers

- Celtix supports a number of Web Services QoS standards.

n Celtix then transmits the message using a transport.
- Celtix includes HTTP, JMS, AMQP, out-of-the-box.
- You can write custom transports for Celtix; for example: TCP, SMTP, FTP.

38 / 289

Celtix Project Overview 10© IONA Technologies 2007

The Celtix communication stack (cont’)
n The binding and transport used by Celtix is determined by

information in the WSDL service contract.

Client

API: JAX-WS

Network

hello.wsdl

SOAP/JMS

<service name=“HelloWorld”/>
<jms:address

jndiDestinationName=“queue.a”/>
</service>

Binding: SOAP

Handlers: -
Transport: JMS

Service

API: JAX-WS

Binding: SOAP
Handlers: -

Transport: JMS

39 / 289

Celtix Project Overview 11© IONA Technologies 2007

The Celtix communication stack (cont’)
n Change the service information, and Celtix will use a different set

of plugins.
- Client and server code is unaffected, as it is payload and protocol neutral.

<service name=“HelloWorld”/>
<soap:address

location=“http://frodo:9090/”/>
</service>

Client

API: JAX-WS

Network

hello.wsdl

SOAP/HTTP

Binding: SOAP

Handlers: -
Transport: HTTP

Service

API: JAX-WS

Binding: SOAP
Handlers: -

Transport: HTTP

40 / 289

Celtix Project Overview 12© IONA Technologies 2007

The Celtix communication stack (cont’)
n The same service can support multiple transports at the same

time.

<service name=“HelloWorld”/>
<soap:address location=“http://frodo:9090/”/>
<jms:address jndiDestinationName=“queue.a”/>

</service>

HTTP Client

JAX-WS

Network

hello.wsdl

SOAP/HTTP

SOAP

-
HTTP

API
Binding

Handlers
Transport

Service

JAX-WS
SOAP

-
HTTP

SOAP

-
JMS

JMS Client

JAX-WS
SOAP

-
JMS

SOAP/JMS

41 / 289

Celtix Project Overview 13© IONA Technologies 2007

Communication Models
n Celtix can be used for a number of different message-exchange-

paradigms (MEPs):
- One-way: raise event, submit document
- Request-response: request information, request service
- Messaging: send/receive document (with store-and-forward capability)
- Publishing: publish-subscribe

n The ability to support all these styles, using a choice of
standardized payload formats and transports, is a key strength of
Celtix.

42 / 289

14Celtix Project Overview © IONA Technologies 2007

Flexibility of Celtix

43 / 289

Celtix Project Overview 15© IONA Technologies 2007

Celtix is extendible
n Celtix is flexible: you can extend it to write your own bindings,

handlers and transports.

n Bindings:
- Add your own payload format.

n Handlers:
- Perform logging or snooping; add message headers

n Transports:
- Extend Celtix to access new transports, for example MQ, CORBA, …

n Remember: Celtix is build from open source components
- You can contribute your extensions to the Celtix code-base.

44 / 289

Celtix Project Overview 16© IONA Technologies 2007

Celtix use cases
n Celtix allows you to provide a multi-protocol, service-oriented

interface for your IT systems
- Build new services using Celtix
- Wrap existing legacy systems in a service-oriented fashion using Celtix
- Provide protocol-agnostic data services
- Use Celtix to integrate J2EE applications with SOA services as a JCA

connector
- Develop clients (service consumers) using Celtix

45 / 289

Celtix Project Overview 17© IONA Technologies 2007

Celtix use cases

C
el

tix
 E

S
B

<<j2ee container>>

<<j2ca>>
:CeltixJCA

<<celtix>>
:Client

<<servlet engine>>

<<servlet>>
:CeltixServlet

<<celtix>>
:Server

<<legacy>><<celtix>>
:LegacyWrapper

<<celtix>>
:DataService

<<celtix>>
:Router

:DBMS

46 / 289

Celtix Project Overview 18© IONA Technologies 2007

Celtix deployment models
n Celtix can be used to write stand-alone Java clients and servers.

n Celtix can also be deployed in a number of different container
technologies:

- In a servlet engine (e.g. Tomcat)
- In a J2EE container (using bi-directional JCA) (e.g. JBOSS)
- In a JBI (Java Business Integration) container (e.g. ServiceMix)
- In a lightweight Spring container

n This flexible deployment approach allows you to deploy your Celtix
service-oriented components anywhere.

47 / 289

Celtix Project Overview 19© IONA Technologies 2007

Celtix deployment (cont’)

WSDL
Contract

<<j2ee container>> <<jbi container>> <<servlet engine>> <<java server>>

<<celtix component>>

<<binding>>
:XML

<<binding>>
:SOAP

<<transport>>
:JMS

<<transport>>
:HTTP

<<business logic>>

<<deploy in>>

Bindings

Transports

48 / 289

Celtix Project Overview 20© IONA Technologies 2007

Celtix licensing
n Celtix is available under the Celtix Enterprise Version 1.1 License

- This is based on the Apache License Version 2.0.
- See http://www.iona.com/forms/celtix/1.0/license.htm

n For a good discussion on open source licenses, see
- http://www.gnu.org/philosophy/license-list.html

49 / 289

http://www.iona.com/forms/celtix/1.0/license.htm
http://www.gnu.org/philosophy/license-list.html

Celtix Project Overview 22© IONA Technologies 2007

Summary
n This session has introduced Celtix Enterprise

- Celtix Enterprise: an open source ESB
- A suite of open-source products, built around the CXF core.

- The Celtix communication stack
- Supports multiple payloads (SOAP/XML/JSON) and transports (HTTP,

JMS, AMQP).
- Celtix Use Cases
- Celtix Flexibility

- Celtix supports a variety of communication models, including one-way,
request-response, messaging and publishing.

- Celtix Deployment
- Celtix can be deployed as standalone client/server, within a J2EE

application server, servlet engine, spring container or JBI container

50 / 289

1Celtix Installation and Environment © IONA Technologies 2007

Celtix Installation and
Environment

51 / 289

Celtix Installation and Environment 2© IONA Technologies 2007

Overview
n This chapter explains how to:

- Obtain and install Celtix
- Set up development & run-time environments

n Celtix consists of:
- Runtime JAR files providing core web services functionality
- Development tools used to generate Java code from WSDL

n To develop or run Celtix-based applications, you must set:
- Java class path (CLASSPATH environment variable)
- System executable path (PATH environment variable)
- Assorted other environment variables

n Celtix can be used in any Java IDE; Eclipse is recommended.
- Can also be used without an IDE.

52 / 289

3Celtix Installation and Environment © IONA Technologies 2007

Downloading and Installing Java 1.5

53 / 289

Celtix Installation and Environment 4© IONA Technologies 2007

Downloading and Installing JDK 1.5
n Celtix uses Java features new to J2SE 5.0

- Celtix will not work with versions of the JDK less than 1.5
- This restriction is due to the JAX-WS 2.0 mapping, which mandates the use

of features from J2SE 5.0.

n Download and install JDK 1.5.0_09 or higher
- Available from http://java.sun.com

n After installation, ensure that you are picking up the correct JDK:
- Ensure PATH contains JDK bin directory before older JDK entries
- Set JAVA_HOME to point to the installation directory of the JDK
- Check you have the correct version of the JDK by running
“java –version” in a command window or UNIX shell

54 / 289

http://java.sun.com

5Celtix Installation and Environment © IONA Technologies 2007

Downloading and Installing Celtix

55 / 289

Celtix Installation and Environment 6© IONA Technologies 2007

Downloading Celtix
n This course was developed for Celtix Enterprise 1.0

- The material is not appropriate for earlier or later releases of Celtix.

n You can download Celtix from
http://www.iona.com/celtix/

n You can download Celtix in source or binary form:
- Source: if you wish to browse the code and learn how Celtix works.
- Binary: if you want to get started building your own applications on Celtix

n Source and binary distributions are available Java Archive format
(.jar), suitable for use on all platforms.

n You can download Celtix documentation from:
http://www.iona.com/celtix/

56 / 289

http://www.iona.com/celtix/
http://www.iona.com/celtix/

Celtix Installation and Environment 7© IONA Technologies 2007

Installing a binary distribution of Celtix
n Celtix is packaged as a zip file.

- Extract the zip file to a temporary directory

n Execute the installer using install.bat (or install.sh on
Unix/Linux)

- A GUI will guide you through the installation process.
- Note: Celtix does not install system DLLs, system services, or registry

settings on Windows-based systems.

n The GUI allows you to select an installation type.
- For this course, choose “Celtix Enterprise Full Install”

57 / 289

Celtix Installation and Environment 8© IONA Technologies 2007

Installing a binary distribution of Celtix (cont’)
n It’s a good idea to embed the Celtix version number in the directory

name:
- Makes it easy for several versions of Celtix to co-exist on the same machine
- Enables you to try a new version before committing to it

n A good naming scheme is
celtix-enterprise-<version-number>

- For example: celtix-enterprise-1.0.1

n Avoid installation directories with names that include white-space.
- Avoid c:\Program Files\celtix-1.0
- Prefer c:\dev\celtix-1.0

58 / 289

9Celtix Installation and Environment © IONA Technologies 2007

Celtix Environment

59 / 289

Celtix Installation and Environment 10© IONA Technologies 2007

Celtix Environment
n Celtix should be used from an appropriately configured shell.

n Always ensure that:
- The correct JDK (1.5.0 or higher) has been placed on the PATH; and
- The JAVA_HOME environment variable has been set to the installation

directory of the JDK.
- The CELTIX_HOME environment variable has been set to the installation

directory of Celtix.

n To set the environment for Celtix, run the celtix_env.bat script.
- This is located in the bin directory of the Celtix installation.
- It will set a number of environment variables for installed components.

- For example, if Tomcat is included in the installation, then
CATALINA_HOME will be set.

60 / 289

Celtix Installation and Environment 11© IONA Technologies 2007

Manifest CLASSPATH in cxf-incubator.jar
n Any JAR files that Celtix depends on are shipped with the Celtix

distribution.

n The manifest file in cxf-incubator.jar provides links to these
JARs

- Therefore you only have to have cxf-incubator.jar on your CLASSPATH
- Before Java 1.5 the Java compiler javac was unable to use classpath

information present in the manifest – this has been recognized as a bug and
fixed for JDK 1.5.0.

61 / 289

12Celtix Installation and Environment © IONA Technologies 2007

Building Celtix from Source

62 / 289

Celtix Installation and Environment 13© IONA Technologies 2007

Using a Celtix source distribution
n Some users will prefer to download a source distribution of the

Celtix core, CXF.
- Suitable for those who wish to browse, debug, maintain or improve the Celtix

source code.

n There are two ways to obtain the source.
- Download an extract a source distribution from the CXF web site.

- Again, use java –jar <celtix-distribution-jar-file>
- Create a local subversion snapshot of the source.

- Subversion is a popular source-code control system used by the CXF
project.

n Using subversion allows you to easily update your snapshot on a
regular basis.

- Allowing you to pick up bug-fixes, enhancements, etc.
- Allows you to contribute to the source (if you have contributor status).

63 / 289

Celtix Installation and Environment 14© IONA Technologies 2007

Using Subversion to obtain CXF
n To create a subversion snapshot of the Celtix source, you need to

have a subversion client installed on your machine.
- Download and install subversion from: http://subversion.tigris.org
- Windows users can use TortoiseSVN, which provides a graphical interface to

subversion.

n Use the following URI to create a local snapshot of the Celtix
source:
- svn://svn.forge.objectweb.org/svnroot/celtix

n You can now easily update your snapshot from the ObjectWeb
repository as necessary.

- Using svn update or the TortoisSVN graphical interface.

n See the Subversion documentation for more details.

64 / 289

http://subversion.tigris.org

Celtix Installation and Environment 15© IONA Technologies 2007

Building Celtix from a source distribution
n Celtix uses the Apache Maven build system.

- Maven is included in the Celtix distribution.
- For more information on Maven, see http://maven.apache.org/
- For more information on how Celtix uses Maven, see the Celtix wiki pages.

n At compile-time, Maven contacts a Maven repository to download
appropriate JAR files for third-party products used by Celtix.

- A number of Maven repositories exist on the internet.
- By default, Celtix uses the ibiblio repository:
http://www.ibiblio.net

- You can configure Celtix to use a different repository if you wish.
- For example, IONA hosts it’s own internal mirror of the Maven repository.

- See the Maven site for a full list of repositories.

65 / 289

http://maven.apache.org/
http://www.ibiblio.net

Celtix Installation and Environment 16© IONA Technologies 2007

Building Celtix from a source distribution (cont’)
n Configure your environment to use Maven:

- Add <celtix-src-dir>/maven/bin to the path.

n Build the source:
- Move to the source directory: <celtix-src-dir>
- Run: mvn install

n The celtix project provides some Maven options that will speed up
the compilation process.

- Run: mvn -Dfastinstall install to omit unit-testing and Java style-
checking.

- For more build options, see the Celtix project page.

n The source is now compiled; the instructions on the next slide
show how to build a binary distribution.

66 / 289

Celtix Installation and Environment 17© IONA Technologies 2007

Building Celtix from a source distribution (cont’)
n Move to the celtix-distribution directory.

- Run: mvn install

n This will create JAR files for the source and binary distributions in
the directory celtix-distribution/target.

n Select an appropriate binary distribution from the target directory
and install.

- Use the same instructions as given earlier in this chapter.

67 / 289

18Celtix Installation and Environment © IONA Technologies 2007

Celtix Development Environment: Ant and Eclipse

68 / 289

Celtix Installation and Environment 19© IONA Technologies 2007

Ant
n Ant is an open-source build system for Java programs

- Serves a similar purpose to make, but better
- Does not have the “invisible tab” problem
- Build “commands” are Java classes rather than OS-specific commands

- Ant is available freely from http://ant.apache.org
- The online Ant documentation contains a good introduction to Ant.

n Rules for the compilation and packaging are stored in a build file
- Serves a similar purpose to a Makefile for make
- Typically called build.xml

n An Ant build file can specify how to:
- Generate code from WSDL files
- Compile Java files
- Package .class and support files into a .jar file

69 / 289

http://ant.apache.org

Celtix Installation and Environment 20© IONA Technologies 2007

Ant (cont’)
n Some IDEs can be integrated easily with Ant:

- Use IDE for editing and debugging
- Click on button in IDE to run an Ant build file

n Alternatively, you can:
- Use a text editor to edit Java files, and…
- Use Ant to compile files
- This is useful:

- For automated, overnight builds
- When doing development over a slow network connection
- When doing development on another machine without your favorite IDE

n Advice: use Ant when developing Celtix-based applications
- Hint: use the build file in the exercise system of this course as a basis for your

own projects

70 / 289

Celtix Installation and Environment 21© IONA Technologies 2007

Using the exercise system build files
n The Celtix samples contain a common_build.xml build file that

you can import into your own build files.

n The common build file sets appropriate classpaths for use with
Celtix, using the CELTIX_HOME environment variable.

n It also contains some useful Ant macros
- wsdl2java – to run the Celtix wsdl2java utility.
- celtixrun – to run a Java class with appropriate CLASSPATH and JVM

properties.

n The build file also contains useful targets
- build – compile all Java source files
- clean – remove all Java object files
- generate-code-if-necessary – will execute a generate.code target if

any files in the wsdl directory have been modified.

71 / 289

Celtix Installation and Environment 22© IONA Technologies 2007

Using the exercise system build files (cont’)
<project name=“...” default=“build”>
<property environment="env"/>
<import

file="${env.CELTIX_HOME}/samples/build-common.xml"/>

<target name="generate.code" unless="codegen.notrequired">
<wsdl2java destdir="${classes.dir}"

srcdestdir="${src.dir}"
file="${wsdl.dir}/HelloWorld.wsdl"/>

</target>
<target name="helloworld.Client" depends="build">

<celtixrun classname="helloworld.Client"/>
</target>

</project>

Use of wsdl2java macroUse of wsdl2java macro

Use of celtixrun macroUse of celtixrun macro

import default targets
and properties for Celtix
development

import default targets
and properties for Celtix
development

This rule will get called by the default rules imported
above.

This rule will get called by the default rules imported
above.

72 / 289

Celtix Installation and Environment 23© IONA Technologies 2007

Using the exercise system build files (cont’)
n The common build file does a lot of the work for you – feel free to

modify, reuse and improve it in your development environment.

n Aside: you may have spotted that Ant has access to the
environment variable CELTIX_HOME

- Java applications in general do not have access to environment variables for
security reasons.

- While Ant is implemented in Java, it uses a default rule to exec a system
command to retrieve the environment data.

- To access environment variables in ant, declare an environment property:
<property environment="env"/>

- Then, use the syntax to reference an environment variable.
${env.VARIABLE_NAME}

73 / 289

Celtix Installation and Environment 24© IONA Technologies 2007

Eclipse
n Eclipse is an open-source IDE

- Very popular among Java developers
- Provides many features that enhance developer productivity:

- Syntax highlighting and code completion
- Refactoring

- Can be downloaded from http://www.eclipse.org
- For use with Celtix Enterprise, use Eclipse 3.2.1 or higher

n Start eclipse from a shell set for the Celtix environment
- Enables you to run and debug Celtix applications from within Eclipse

n Tight integration makes Eclipse + Ant a compelling development
environment.

74 / 289

http://www.eclipse.org

Celtix Installation and Environment 25© IONA Technologies 2007

Note: Setting the Celtix classpath in Eclipse
n To set the Celtix class path in Eclipse, use the “user library”

feature.

n In Eclipse 3.1.1, this is found under the menu path:
- Window à Preferences à Java à Build Path à User Libraries

n Create a new user library, called “Celtix <version_number>”.

n Add all the jars under the Celtix lib directory to the user library.
- Unfortunately, Eclipse does not yet support the use of the manifest classpath

present in celtix.jar.

n Also, ensure that Eclipse is configured to work with J2SE 5.0
- Window à Preferences à Java à Compiler à JDK Compliance

n In your project, add the Celtix user library to the build path.

75 / 289

Celtix Installation and Environment 26© IONA Technologies 2007

Using Eclipse WTP and STP
n As well as providing a programming environment (IDE), Eclipse

provides tooling plugins for XML Schema and WSDL contracts.
- WTP (Web Tooling Project)
- STP (SOA Tooling Project)

n These plugins are open-source, and available for use under the
Eclipse license.

n Instructions for installing these plugins can be found in the
CELTIX_HOME/tools/stp directory.

76 / 289

Celtix Installation and Environment 28© IONA Technologies 2007

Summary
n This chapter has told you how to:

- Download and install Java 1.5
- Download and install Celtix
- Configure Ant and Eclipse to work with Celtix

n Celtix is installed by:
- Untaring or unzipping distribution file
- Setting a few environment variables

n Eclipse and Ant make a great development environment for Celtix

77 / 289

1Introduction to WSDL – RPC Style © IONA Technologies 2007

Introduction to WSDL – RPC Style

78 / 289

Introduction to WSDL – RPC Style 2© IONA Technologies 2007

Overview
n Recall: WSDL is used to specify the interface to a service.

- A WSDL contract has a logical part, used to capture the semantics of a
service in a middleware neutral way.

- A WSDL contract also has a physical part, used to provide payload
format, protocol and contact details.

n WSDL can be used to describe:
- Synchronous request-response interfaces (RPC style); and,
- Asynchronous, messaging-style interfaces (document style).

n This chapter teaches how to use WSDL for RPC style
interfaces.

- Document style interfaces are treated in a later chapter.
- The use of wrapped-doc-literal style will also be treated in a later

chapter.

79 / 289

Introduction to WSDL – RPC Style 3© IONA Technologies 2007

Aside: the complexity of WSDL
n WSDL can be difficult for the newcomer.

- The verbose XML syntax, with heavy use of namespaces, can seem
cluttered and unergonomic.

- With practise, and the use of appropriate GUI design tools, this
complexity is greatly reduced.

80 / 289

Introduction to WSDL – RPC Style 4© IONA Technologies 2007

Motivating example - HelloWorld
n For the purpose of this chapter, we will use the following

“HelloWorld” interface as a motivating example.

interface HelloWorld
{

String sayHi();
String greetMe(String me)

}

81 / 289

5Introduction to WSDL – RPC Style © IONA Technologies 2007

WSDL concepts: portType, messages and types.

82 / 289

Introduction to WSDL – RPC Style 6© IONA Technologies 2007

WSDL concepts: portType and operation
n In WSDL terms, a service’s interface exposes a number of

operations.
- This is similar in concept to a Java interface or C++ header file.
- WSDL originally used the term portType instead of interface.

- This is unfortunate, and can be confusing for some people.
- This issue has been rectified in WSDL 2.0, where the term interface

is used.

n In our example, we will define a portType (interface) named
HelloWorld.

- There are two operations, sayHi() and greetMe().

83 / 289

Introduction to WSDL – RPC Style 7© IONA Technologies 2007

WSDL concepts: message
n WSDL messages are used to define the data that gets sent to

and from a service.

n Each operation has:
- An input message;
- An optional output message; and
- An optional number of fault messages.

<<service>>
:Service

Interface

<<consumer>>
:Client

Request Message

Response Message

84 / 289

Introduction to WSDL – RPC Style 8© IONA Technologies 2007

RPC-style messages
n When designing messages for RPC, each operation will

typically have at least two messages.
- The request message contains the input parameters.
- The response message contains the return value and any additional

output parameters.

n In this context, you can consider the message to be a
“parameter list”.

- Each WSDL message contains a number of parts, and each part has an
associated type.

n By convention, the input message has the same name as the
operation; the output message ends with Response.

n Our HelloWorld interface has four messages.
- sayHello, sayHelloResponse, greetMe, greetMeResponse.

85 / 289

9Introduction to WSDL – RPC Style © IONA Technologies 2007

HelloWorld.wsdl logical contract

86 / 289

Introduction to WSDL – RPC Style 10© IONA Technologies 2007

Logical part of HelloWorld.wsdl
n We will walk through the logical contract for a simple

HelloWorld service.

n We will proceed in a bottom up fashion:
- Types
- Messages
- Operations
- Interface (portType)

n The WSDL is verbose: you are not expected to absorb it all at
once, just get an idea of the structure.

87 / 289

Introduction to WSDL – RPC Style 11© IONA Technologies 2007

HelloWorld.wsdl – namespaces and <types>
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld.wsdl"
targetNamespace=

"http://www.iona.com/ps/courseware/HelloWorld"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns=

"http://www.iona.com/ps/courseware/HelloWorld"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types/>
No types are required for this
simple contract. In this case,
we could omit the <types>
element altogether.

88 / 289

http://www.iona.com/ps/courseware/HelloWorld
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.iona.com/ps/courseware/HelloWorld
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2001/XMLSchema

Introduction to WSDL – RPC Style 12© IONA Technologies 2007

HelloWorld.wsdl - <message>

<message name="sayHi"/>
<message name="sayHiResponse">

<part name="return" type="xsd:string"/>
</message>

<message name="greetMe">
<part name="me" type="xsd:string"/>

</message>
<message name="greetMeResponse">

<part name="return" type="xsd:string"/>
</message>

String sayHi();

String greetMe(String me);

89 / 289

Introduction to WSDL – RPC Style 13© IONA Technologies 2007

HelloWorld.wsdl - <portType>
<wsdl:portType name=“HelloWorld">

<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHi"
name="sayHi"/>

<wsdl:output message="tns:sayHiResponse"
name="sayHiResponse"/>

</wsdl:operation>

<wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMe"
name="greetMe"/>

<wsdl:output message="tns:greetMeResponse"
name="greetMeResponse"/>

</wsdl:operation>
</wsdl:portType>

String sayHi();

String greetMe(String me);

90 / 289

14Introduction to WSDL – RPC Style © IONA Technologies 2007

WSDL Operation Styles

91 / 289

Introduction to WSDL – RPC Style 15© IONA Technologies 2007

Request-response operations
n A request-response message has an input, output and

optional fault messages.

<wsdl:operation name="...">
<wsdl:input name="..." message="..."/>
<wsdl:output name="..." message="..."/>
<wsdl:fault name="..." message="..."/>
<wsdl:fault name="..." message="..."/>

</wsdl:operation>

n This operation type is very common in synchronous web
services.

92 / 289

Introduction to WSDL – RPC Style 16© IONA Technologies 2007

One-way operations
n A one-way operation just has a request-message and no fault

message.

<wsdl:operation name=“...">
<wsdl:input name="..." message="..."/>

</wsdl:operation>

n There is no explicit “one-way” qualifier; the operation is
deduced to be one-way because no wsdl:output message
is present.

n If your operation returns a void, and you don’t want it to be
one-way, return a message with no parts.

n One-way operations can be used for asynchronous
messaging.

93 / 289

Introduction to WSDL – RPC Style 17© IONA Technologies 2007

Solicit-response operations
n Solicit-response differs from the request-response form only in

that the output comes before the input.
- This operation style attempts to specify a “callback”; the Service will

initiate an invocation on the client (with an output message), and the
client will respond (with an input message).

- However, there is no indication of how the client should register for this
callback functionality.

- Solicit-response is not used by anyone; there is currently no binding
that supports it.

<wsdl:operation name="...">
<wsdl:output name="..." message="..."/>
<wsdl:input name="..." message="..."/>
<wsdl:fault name="..." message="..."/>

</wsdl:operation>

94 / 289

Introduction to WSDL – RPC Style 18© IONA Technologies 2007

Notification operations
n A “notification” operation has an output message only.

- Like solicit-response, it attempts to capture callback semantics, but
fails.

- There is currently no binding that supports this.

<wsdl:operation name="...">
<wsdl:output name="..." message="..."/>

</wsdl:operation>

n Philosophical note: most standards are good; however, most
have some flaws or warts.

- Operations styles like “solicit-response” and “notification” are
unfortunate flaws in the WSDL specification.

95 / 289

19Introduction to WSDL – RPC Style © IONA Technologies 2007

Physical part of HelloWorld.wsdl

96 / 289

Introduction to WSDL – RPC Style 20© IONA Technologies 2007

WSDL concept: bindings
n The physical part of a contract contains bindings, services and

ports.

n The binding describes how the messages will be formatted
when sent on the wire.

- Historically, WSDL provides two different bindings for RPC style
documents; RPC-encoded and RPC-literal.

- Of these, the RPC-encoded binding is now considered deprecated.
- The term “encoded” refers to the “SOAP encoding”
- Some tools continue to support it for backward compatibility.

n Bindings are structurally similar to portType elements.
- They contain operations with inputs and outputs.
- They decorate this structure with information on how to format the data

on the wire.
- For completeness, we show an RPC-literal binding on the next slide.

97 / 289

Introduction to WSDL – RPC Style 21© IONA Technologies 2007

HelloWorld.wsdl - <binding>
<wsdl:binding name="HelloWorldSOAPBinding"

type="tns:HelloWorld">
<soap:binding style=“rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="sayHi">
<soap:operation soapAction="" style=“rpc"/>
<wsdl:input name="sayHi">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="sayHiResponse">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>

<!–- continued on next slide -->

98 / 289

http://schemas.xmlsoap.org/soap/http

Introduction to WSDL – RPC Style 22© IONA Technologies 2007

HelloWorld.wsdl - <binding> (cont’)

<!-- continued from previous slide -->

<wsdl:operation name="greetMe">
<soap:operation soapAction="" style=“rpc"/>
<wsdl:input name="greetMe">

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="greetMeResponse">

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

99 / 289

Introduction to WSDL – RPC Style 23© IONA Technologies 2007

Critique: <binding> element
n The binding element is verbose, and difficult to write and

maintain by hand.

n The binding element is structurally quite similar to the
portType element – it seems like unnecessary repetition.

n Advice: use a tool to automatically generate bindings for you:
- Artix provides an Eclipse plug-in that can do this.
- The Eclipse Web Tooling Project (WTP) and SOA Tooling Project

(STP) provides similar functionality that can be used with Celtix.

100 / 289

Introduction to WSDL – RPC Style 24© IONA Technologies 2007

Critique: SOAP vs. literal binding for RPC
n To appreciate the difference between the SOAP and literal

encodings, look at the messages get produced.

n For the greetMe() message, the SOAP encoding produces
(omitting SOAP envelope and body):

<greetMe>
<me xsi:type="xs:string">Joe Bloggs</me>

</greetMe>
-

n The equivalent message in literal encoding is:

<greetMe>
<me>Joe Bloggs</me>

</greetMe>

101 / 289

Introduction to WSDL – RPC Style 25© IONA Technologies 2007

Critique: SOAP vs. literal binding for RPC (cont’)
n The SOAP-encoded binding adds type information to each

element in the message.
- This exchange of type information on every message makes the

message bulky.

n The literal binding is more compact.
- Also, the literal encoding has better-defined rules for encoding arrays;

the SOAP encoding was poor in this regard which lead to
interoperability issues.

102 / 289

Introduction to WSDL – RPC Style 26© IONA Technologies 2007

Critique: SOAP vs. literal binding for RPC (cont’)
n Messages produced from SOAP-encoded and literal bindings

for RPC both suffer from the fact that they cannot be validated
by an XML parser.

n Consider the RPC-literal message:

<greetMe>
<me>Joe Bloggs</me>

</greetMe>

n The elements greetMe and me do not have an associated
XML schema.

- As such, they can be parsed but not validated by an XML parser.
- This is a drawback; however, many SOAP toolkits turn off validation by

default anyway, for performance reasons.

103 / 289

Introduction to WSDL – RPC Style 27© IONA Technologies 2007

WSDL concepts: port
n A WSDL port takes adds physical address information to a

binding.
- Below, the SOAP binding for the HelloWorld interface is bound to the

HTTP transport.

<wsdl:port binding="tns:HelloWorld_SOAPBinding"
name=“SOAPOverHTTP">

<soap:address location="http://localhost:9000"/>
</wsdl:port>

n A port must be placed in the context of a service element.
- In WSDL terminology, a service is a collection of ports.

104 / 289

Introduction to WSDL – RPC Style 28© IONA Technologies 2007

HelloWorld.wsdl - <service> and <port>
n A service is a collection of ports.

- This service below contains just one port.

<wsdl:service name="HelloWorldService">
<wsdl:port binding="tns:HelloWorld_SOAPBinding"

name=“SOAPOverHTTP">
<soap:address location="http://localhost:9000"/>

</wsdl:port>
</wsdl:service>

n The semantics of the service element are flexible; it could
mean;

- “This service is accessible via a number of middleware technologies”;
or,

- “There are a number of instances of this service”.

105 / 289

Introduction to WSDL – RPC Style 30© IONA Technologies 2007

Summary
n This chapter has used a simple interface to illustrate how a

WSDL file is put together.

n WSDL is overly verbose
- A four-line psuedo-code interface took pages of WSDL.
- There is unfortunate repetition (e.g., structure of portType and binding)
- XML syntax itself is verbose
- … but you get used to it.

n Most vendors provide tooling to assist in WSDL design
- GUI tools for WSDL first; and
- Code generation tools to generate WSDL from other interface

languages such as COBOL, PL1, JAVA,

n The slide overleaf provides a useful reference overview of the
syntax of a WSDL contract.

106 / 289

Introduction to WSDL – RPC Style 31© IONA Technologies 2007

Reference: outline of a WSDL contract
<?xml version=“1.0” encoding=“UTF-8”?>
<wsdl:definitions name=“HelloWorld” xmlns:wsdl=“...”>

<wsdl:types> ... </wsdl:types>
<wsdl:message name=“...”>
<wsdl:part name=“...” element=“...” />

</wsdl:message>
<wsdl:portType name=“...”>
<wsdl:operation name=“...”>
<wsdl:input name=“...” message=“...”>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name=“...” type=“...”>... </wsdl:binding>
<wsdl:service name=“...”>
<wsdl:port binding=“...” name=...”> ... </wsdl:port>

</wsdl:service>
</wsdl:definitions>

Physical part

Logical part

107 / 289

1WSDL-to-Java mapping with JAX-WS © IONA Technologies 2007

WSDL-to-Java Mapping with
JAXWS

108 / 289

WSDL-to-Java mapping with JAX-WS 2© IONA Technologies 2007

Overview
n The JAX-WS WSDL to Java mapping is largely intuitive.

- WSDL portType → Java interface
- WSDL operation → Java method
- WSDL message part → to Java method parameters
- WSDL fault → Java Exception
- XSD types and elements → Java classes as per JAXB

n Most developers will learn what they need to know by browsing the
generated Java code.

- For a detailed description of the mapping, see the JAX-WS specification.

n This chapter discusses some not-so intuitive parts of the mapping.
- Support for wrapped-doc-literal WSDL
- Exception wrapping

109 / 289

3WSDL-to-Java mapping with JAX-WS © IONA Technologies 2007

Support for Wrapped-doc-literal

110 / 289

WSDL-to-Java mapping with JAX-WS 4© IONA Technologies 2007

Support for wrapped-doc-literal
n Recall: in the wrapped-doc-literal style, an RPC call is transferred

as a single XML element.
- The name of the root element is the same as the operation name.
- The sub-elements are the parameters.

n The JAX-WS specification supports both doc-literal and wrapped
doc-literal.

- The term supports means that a JAX-WS wsdl-to-java compiler should
generate appropriate Java code for the intent of the WSDL designer.

- If wrapped-doc-literal is detected then the operation parameters will
“unfolded” and appear as a list of method arguments in the Java code.

- If doc-literal is detected, then the Java method will contain just a single
parameter, corresponding to the incoming document.

n The rules for detecting the wrapped-doc-literal style are specified in
the JAX-WS specification.

111 / 289

WSDL-to-Java mapping with JAX-WS 5© IONA Technologies 2007

Mapping wrapped operations
n If an operation is detected as being wrapped, then its parameters

are defined by the wrapper children
- The term “wrapper children” is used for the elements in the wrapper
sequence.

n Each wrapper child in the input message is an in parameter.
- The wrapper child maps directly to the equivalent JAXB class.

n Each wrapper child in the output message is an out parameter
- The wrapper child maps directly to a Holder for the equivalent JAXB class.

n Any wrapper child in the input and output message is treated as an
in-out parameter.

- The wrapper child maps to a Holder for the equivalent JAXB class.
- Two children are “the same” if they have the same name and same type.

112 / 289

WSDL-to-Java mapping with JAX-WS 6© IONA Technologies 2007

Return type for wrapped operations
n If there is a single out wrapper child then it becomes the return-

type.

n Alternatively, if there is more than one out wrapper child, then the
child named “return” becomes the return-type.

- If there is no child named “return” then the return-type is void.

113 / 289

WSDL-to-Java mapping with JAX-WS 7© IONA Technologies 2007

Example: wrapped-doc-literal operation

<types>
<schema targetNamespace="http://www.iona.com/artix/mapping"

xmlns="http://www.w3.org/2001/XMLSchema">
<element name="doSomething">
<complexType>

<sequence>
<element name="x" type="int"/>
<element name="y" type="long"/>

</sequence>
</complexType>

</element>
Wrapped: parameters
are defined as an
XML sequence.

114 / 289

http://www.iona.com/artix/mapping
http://www.w3.org/2001/XMLSchema

WSDL-to-Java mapping with JAX-WS 8© IONA Technologies 2007

Example: wrapped-doc-literal operation (cont’)

<element name="doSomethingResponse">
<complexType>

<sequence>
<element name="y" type="long"/>
<element name="z" type="float"/>
<element name="return" type="boolean"/>

</sequence>
</complexType>

</element>
</schema>

</types>
Wrapped: parameters
are defined as an
XML sequence.

115 / 289

WSDL-to-Java mapping with JAX-WS 9© IONA Technologies 2007

Example: wrapped-doc-literal operation (cont’)

<message name="doSomething">
<part element="tns:doSomething" name="parameters"/>

</message>
<message name="doSomethingResponse">

<part element="tns:doSomethingResponse" name="parameters"/>
</message>
<portType name="Foo">

<operation name="doSomething">
<input message="tns:doSomething" name="doSomething"/>
<output message="tns:doSomethingResponse"
name="doSomethingResponse"/>

</operation>
</portType>

Wrapped: messages have
one part, refering to a
complex sequence
element.

116 / 289

WSDL-to-Java mapping with JAX-WS 10© IONA Technologies 2007

Generated Code
n Using the rules for unwrapped operations, the JAX-WS

specification produces the following service endpoint interface
(SEI):

public interface Foo {
public boolean doSomething(

int x,
Holder<Long> y,
Holder<Float> z

);
}

117 / 289

11WSDL-to-Java mapping with JAX-WS © IONA Technologies 2007

JAX-WS fault-mapping

118 / 289

WSDL-to-Java mapping with JAX-WS 12© IONA Technologies 2007

JAX-WS fault-mapping
n A fault is usually defined as an XML sequence.

n For example, this fault contains a message and errorCode.

<element name="FooFault">
<complexType>

<sequence>
<element name="message" type="string"/>
<element name="errorCode" type="int"/>

</sequence>
</complexType>

</element>

119 / 289

WSDL-to-Java mapping with JAX-WS 13© IONA Technologies 2007

Defining a fault message
n To declare an exception in WSDL, you must create a fault

message.

<message name="FooFault">
<part element="tns:FooFault" name="parameters"/>

</message>
<portType name="Foo">

<operation name="doSomething">
<input message="tns:doSomething" name="doSomething"/>
<output message="tns:doSomethingResponse"

name="doSomethingResponse"/>
<fault message="tns:FooFault" name="FooFault"/>

</operation>
</portType>

120 / 289

WSDL-to-Java mapping with JAX-WS 14© IONA Technologies 2007

Mapping for faults
n The fault, FooFault, is mapped using JAXB to a Java class.

- JAXB does not apply any special “fault” treatment to this sequence.
- In particular, the generated class will not extend java.lang.Exception or

implement java.lang.Throwable.
- This class is known as the “fault bean”.

n The fault bean has get- and set- methods for each of the exception
fields.

n Aside: the mapping for faults is not natural for Java developers, so
this violates JAX-B’s goals.

121 / 289

WSDL-to-Java mapping with JAX-WS 15© IONA Technologies 2007

Mapping for fault message.
n The fault message, FooFault, is mapped to an exception

wrapper class with the same name as the message.
- If the message has the same name as the fault bean (as in this example) then

the name is derived by concatenating the name of the fault bean with
“_Exception”.

n The exception wrapper class has the following properties:
- It extends java.lang.Exception.
- It has appropriate constructors:

FooFault_Exception(String message, FooFault faultInfo);
FooFault_Exception(String message, FooFault faultInfo,

Throwable cause);

- It has a getFaultInfo() method that returns the fault bean.

122 / 289

WSDL-to-Java mapping with JAX-WS 16© IONA Technologies 2007

Fault method signature
n The method signature now throws the appropriate exception

wrapper class.

public interface Foo {
public boolean doSomething(

int x,
Holder<Long> y,
Holder<Float> z

) throws FooFault_Exception;
}

123 / 289

WSDL-to-Java mapping with JAX-WS 17© IONA Technologies 2007

Throwing an exception
public boolean doSomething(

int x,
Holder<Long> y,
Holder<Float> z

) throws FooFault_Exception
{

// Create the fault bean.
FooFault fault = new FooFault();
fault.setMessage(“Something went wrong.”);
fault.setErrorCode(001);

// Wrap the fault bean and throw the exception wrapper
throw new FooFault_Exception(fault);

}

124 / 289

WSDL-to-Java mapping with JAX-WS 19© IONA Technologies 2007

Summary
n The JAX-WS WSDL to Java mapping is largely intuitive.

- It relies on JAXB to map XML types and elements to Java classes.

n The best way to learn the mapping is to learn as you go.
- Design some WSDL, generate code and review.

n We have looked in detail at two non-trivial aspects of the mapping.
- How parameters and return-types are determined for wrapped WSDL

operations.
- How faults are mapped to fault beans and exception wrappers.

125 / 289

1© IONA Technologies 2007SOAP

Simple Object Access Protocol (SOAP)

126 / 289

SOAP 2© IONA Technologies 2007

Overview
n SOAP stands for Simple Object Access Protocol.

- Designed for accessing objects across a network using XML
messaging.

- The protocol was seen as an alternative to binary protocols such as
COM, IIOP or RMI.

- SOAP is “firewall-friendly” and suitable for use on the internet.
- Despite it’s name, SOAP is concerned with services rather than objects.

n SOAP is no longer “simple”: it has matured to include
alternative encodings, security, transactions, and encryption.

n The latest version of the SOAP standard is SOAP 1.2
- Resource: http://www.w3.org/TR/SOAP/

127 / 289

http://www.w3.org/TR/SOAP/

SOAP 3© IONA Technologies 2007

Structure of a SOAP message
n A SOAP message is an XML document that provides a

“wrapper” around the XML payload (data).

n The message has an Envelope element that identifies the
message boundary and includes:

- An optional Header (containing meta-data, system-level data or other
auxiliary information)

- A Body (containing the XML payload).

Envelope

Header

Body

128 / 289

SOAP 4© IONA Technologies 2007

Skeleton SOAP Message
n The following fragment shows a skeleton SOAP message
n Like any XML document, it has one root element (the
Envelope) and it makes extensive use of namespaces.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap=“ ... ">

<soap:Header>
... ...

</soap:Header>
<soap:Body>

... ...
<!-- message payload goes here -->

</soap:Body>
</soap:Envelope>

129 / 289

SOAP 5© IONA Technologies 2007

Sample SOAP request
n The following SOAP message is taken from a sample “hello

world” server:
<?xml version='1.0' encoding='utf-8'?>
<ENV:Envelope
xmlns:ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:m1="http://IONA.com/HelloWorld">
<ENV:Body>

<m1:greetMe>
<stringParam0 xsi:type="xsd:string">

Hello From WS Client
</stringParam0>

</m1:greetMe>
</ENV:Body>

</ENV:Envelope>

130 / 289

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://IONA.com/HelloWorld

SOAP 6© IONA Technologies 2007

Sample SOAP response
n This message is the response to the previous message.
<?xml version='1.0' encoding='utf-8'?>
<ENV:Envelope
xmlns:ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:m1="http://IONA.com/HelloWorld">
<ENV:Body>

<m1:greetMeResponse>
<return xsi:type="xsd:string">

Echo: Hello From WS Client
</return>

</m1:greetMeResponse>
</ENV:Body>

</ENV:Envelope>

131 / 289

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://IONA.com/HelloWorld

SOAP 7© IONA Technologies 2007

Notes on the sample messages
n Neither message used a Header element.

- Recall that headers are optional.

n Both messages differ only in the contents of the Body
element.

132 / 289

SOAP 8© IONA Technologies 2007

SOAP Fault
n A service can return a SOAP Fault in the event of an error.

- A fault is semantically equivalent to an exception in C++ or Java.

n SOAP Faults are placed within the Body element of the
SOAP message.

n SOAP Faults can contain the following elements:
- faultCode: indicates the type of fault (see next slide)
- faultstring: a human-readable message describing the error.
- detail: XML data providing further information about the fault.

n The next slide gives an example of a SOAP Fault.
- The fault captures an application-level server-side exception: a request

arrived for a customer named “scott” who does not exist.

133 / 289

SOAP 9© IONA Technologies 2007

SOAP Fault: example
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="...">

<SOAP-ENV:Body>
<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>NoSuchCustomer</faultstring>
<detail>

<ns5:NoSuchCustomer
xmlns:ns5="...">
<firstName>scott</firstName>
<lastName></lastName>

</ns5:NoSuchCustomer>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Application-level fault
information.

Indicates a server-
side problem.

Descriptive human-
readable text.

134 / 289

SOAP 10© IONA Technologies 2007

SOAP faultCode
n The faultCode element can contain four values

- Server: the fault was raised by the server
- Client: the fault was raised on the client
- MustUnderstand: the original message contained a header that the

service did not understand.
- VersionMismatch: an incompatible SOAP version was encountered.

135 / 289

SOAP 11© IONA Technologies 2007

RPC-style communication with SOAP
n SOAP can be used for RPC-style communication.

- RPC tries to make remote network calls look and feel like local
procedure calls in a programming language

n RPC communication is typically synchronous in nature.
- The client blocks until the request has completed and the response (if

any) has been returned.

n RPC communication is familiar to people who have used
CORBA, RMI or DCOM

n When SOAP is used for RPC, the SOAP request and
response contain the parameters (and optional return values)
for the remote procedure call.

136 / 289

SOAP 12© IONA Technologies 2007

Document-style communication with SOAP
n SOAP can also be used for document-style communication

- Document-style systems focus on sending messages (documents) from
one party to another.

n Document-style communication is typically asynchronous in
nature.

- The client sends a document but does not wait for a response.
- The client may optionally listen for an asynchronous response using

either polling or a callback.

n Document-style communication is familiar to people who have
used JMS, CORBA Notification Service, or message queue
systems.

n When SOAP is used for document-style communication, the
SOAP request (and response) messages contain an XML
document.

137 / 289

SOAP 13© IONA Technologies 2007

SOAP with Attachments
n SOAP provides an “XML envelope” for XML documents.

n An “all-XML” approach may be inappropriate for some
applications.

- How would you transmit an X-ray image along with a patient record?

n Non-XML data can be transmitted in a SOAP message using
MIME attachments.

- MIME stands for Multi-purpose Internet Mail Extensions.
- Originally intended for use with email (SMTP) protocol, it is now also

used to implement “SOAP with Attachments”.

n A MIME message has:
- Some MIME headers
- A number of parts.

138 / 289

SOAP 14© IONA Technologies 2007

SOAP with Attachments (cont’)
Content-type: multipart/mixed; boundary="MIME_boundary"
MIME-version: 1.0
--MIME_boundary
Content-type: text/plain
<?xml version='1.0' encoding='utf-8'?>
<ENV:Envelope>

<ENV:header>
...

</ENV:header>
<ENV:Body>

...
</ENV:Body>

</ENV:Envelope>
--MIME_boundary
Content-type: application/octet-stream
Content-transfer-encoding: base64
gajwO4+....
--MIME_boundary--

SOAP Message is
wrapped in a MIME
part, transmitted in
plain-text.

Attachment is
transmitted as a
base64 encoded octet
stream.

MIME headers

139 / 289

SOAP 15© IONA Technologies 2007

SOAP Processing
n Software responsible for the generation, transmission,

reception and analysis of these messages is typically known
as a SOAP Processor

n A SOAP processor can be a standalone listener on a TCP
port

- Accepting incoming SOAP messages and passing them up in the stack

n Alternatively, the SOAP processor may be part of a web
server such as Apache.

- If your web server doesn’t include a SOAP processor out-of-the-box,
then it is most likely that you can add a “SOAP plug-in”.

140 / 289

SOAP 16© IONA Technologies 2007

SOAP 1.2
n SOAP 1.1 is perhaps the most used version of SOAP

specification

n The latest release is SOAP 1.2
- Incorporates SOAP with attachments (controversial, as it implies that

the client and server will understand the attachments)
- Recommended by WS-I in its Basic Profile 1.0

- Allows for additional information payload as an attached file – that
may contain binary as well as text data

- Now being incorporated into existing SOAP implementations
- Other web service standards and interoperability efforts also starting

to build on top of SOAP to allow for support of attachments

n Reference: http://www.w3.org/TR/soap

141 / 289

http://www.w3.org/TR/soap

SOAP 17© IONA Technologies 2007

Summary
n SOAP provides an XML-based “wrapper” around messages.

n While SOAP is typically transmitted over HTTP, it does not
rely on HTTP in any way.

- You can send SOAP messages over JMS, IIOP, email, …

n SOAP supports both synchronous RPC-style and
asynchronous document-style messaging

142 / 289

1UDDI © IONA Technologies 2007

Universal Discovery, Description and
Integration (UDDI)

143 / 289

UDDI 2© IONA Technologies 2007

UDDI
n UDDI (Universal Description, Discovery and Integration) is an

OASIS sponsored standard.

n UDDI is like a “yellow” pages for web services:
- Service providers register/publish services including WSDL file along

with searchable attributes
- Potential clients search UDDI registries to retrieve WSDL suiting their

service needs

n Note: UDDI is the least accepted of the core web services
technologies (SOAP, WSDL and UDDI).

- It is complex, and burdened by a lot of business level aspects (e.g.,
descriptions of a business).

n Resource: http://www.uddi.org

144 / 289

http://www.uddi.org

UDDI 3© IONA Technologies 2007

UDDI business registries
n Public UDDI business registry (UBR) nodes are hosted by

IBM, Microsoft and SAP.
- http://uddi.ibm.com
- http://uddi.microsoft.com
- http://uddi.sap.com

n UBRs are themselves web services
- They implement the UDDI WSDL interface, which provides APIs to

register and discover web services.

145 / 289

http://uddi.ibm.com
http://uddi.microsoft.com
http://uddi.sap.com

UDDI 4© IONA Technologies 2007

UDDI implementations
n A number of implementations of UDDI exist that allow you to

run your own UDDI registry.

n jUDDI – open source UDDI registry from Apache
- http://ws.apache.org/juddi/

n SOAP UDDI – open source UDDI reference implementation
- http://soapuddi.sourceforge.net/

n A number of commercially available web service toolkits also
provide some support for UDDI clients and servers.

146 / 289

http://ws.apache.org/juddi/
http://soapuddi.sourceforge.net/

UDDI 5© IONA Technologies 2007

Practical alternatives to UDDI
n For many, UDDI is unwieldy and over-engineered.

n It may be more appropriate to advertise web services through:
- Web server: mount your WSDL files in a well known location so service-

users can access them easily.
- Shared file-system: place your WSDL files in a well-known place in the

file-system.
- File copy: give each client distribution it’s own copy of the WSDL

contract, for example in an “etc” directory.
- This may lead to problems if the interface changes (but then, if the

interface changes then it’s likely that you will have a new version of
the client software anyway)

- Will cause problems if the service location information changes.
However, location information is best kept configurable at application
level.

147 / 289

UDDI 6© IONA Technologies 2007

Summary
n UDDI provides a specification for web service repositories,

known as UDDI Business Registries (UBRs)

n A number of open-source and commercial implementations of
UDDI exist.

n UDDI is not an essential component of web services.
- Instead, you can use shared file-systems, shared files or a web server

to make your WSDL contracts available.

148 / 289

1Overview of Celtix Development © IONA Technologies 2007

Overview of Celtix Development

149 / 289

Overview of Celtix Development 2© IONA Technologies 2007

Introduction
n This chapter uses a “Hello, World” client-server example.

n Structure of this chapter:
- Recommended directory structure for a Celtix project
- How to generate Java APIs from a WSDL contract;
- Server-side code:

- Finish the “servant” class, which implements the operations provided by
the service and defined in WSDL;

- Instantiate the servant;
- Register the servant as an endpoint.

- Client-side code:
- Connect to the service and invoke an operation.

n We use common-sense conventions to organize code.

150 / 289

3Overview of Celtix Development © IONA Technologies 2007

Structure of a Celtix Project

151 / 289

Overview of Celtix Development 4© IONA Technologies 2007

Directory structure of a Celtix project
n Some conventions for directory structure in Celtix project.

- You do not have to follow these conventions, but it is beneficial to do so.

n A project typically contains the following directories:
- build/classes Contains compiled Java classes.
- build/src Contains generated Java source code.
- src Contains handwritten Java source code.
- wsdl Contains WSDL files.

n Some other directories are also common:
- cfg (or conf) Contains configuration information
- etc Contains miscellaneous files.
- lib Contains JAR files needed for compilation
- log Contains log files generated at run-time.

152 / 289

Overview of Celtix Development 5© IONA Technologies 2007

Directory structure of a Celtix project (cont’)
n The top level project directory contains:

- The Ant build file (build.xml).
- Eclipse .classpath and .project files.
- Any other project-related files.

153 / 289

6Overview of Celtix Development © IONA Technologies 2007

Overview of the HelloWorld Project

154 / 289

Overview of Celtix Development 7© IONA Technologies 2007

Overview of “Hello, World”
n Historical note:

- “Hello, World” dates back to 1978
- First program in The C Programming Lanaguage by Kernighan and Ritchie
- Original (non-distributed) example just printed “Hello, World” to the screen

n A server provides String sayHello(String msg)
- Server prints the message it receives and returns “Hello to you too!”

n The server’s interface has already been defined using WSDL
- You can find this file in
celtix_exercises/HelloWorld/student/wsdl/HelloWorld.wsdl

n This example demonstrates key development tasks:
- How to generate Java support code from WSDL
- How to implement a web service
- How to implement a web service client

155 / 289

Overview of Celtix Development 8© IONA Technologies 2007

Deployment view

HelloWorld
Client

HelloWorld.wsdl

HelloWorld
Server

SOAP/
HTTP

ret := sayHello(“myName”);

1. Server reads
service description
and network address
information from the
WSDL contract.

3. Client invokes on
the server using
SOAP/HTTP.

2. Client reads
service description
and network address
information from the
WSDL contract.

156 / 289

Overview of Celtix Development 9© IONA Technologies 2007

Deployment view (cont’)
Notes on client and server interaction…

n Server:
- Uses WSDL file to create a service endpoint for HelloWorld service.
- Goes into event loop to listen for incoming requests

n Client:
- Reads service endpoint information from the WSDL file
- Invokes sayHello(), sending a string message as a parameter.

n Server (on receiving a request):
- Prints string parameter to screen
- Returns a string response.

157 / 289

Overview of Celtix Development 10© IONA Technologies 2007

Object view

HelloWorld
Server

HelloWorld
Client

<<proxy>>
:HelloWorldI

:HelloWorldService

:HelloWorldImpl
sayHello()

sayHello() SOAP/
HTTP

3. The client invokes
sayHello() on the
proxy, which
delegates the call
across the network.

2. The client creates
a service object, and
uses it to create a
proxy.

1. The server creates
a servant and
registers it as an
endpoint.

158 / 289

Overview of Celtix Development 11© IONA Technologies 2007

Classes
n The classes described in the next slides are representative of

every client and server:

n Service:
- A client-side object that describes the remote service, and provides methods

to create proxies to the remote service.
- Generated from the WSDL by wsdl2java (a Celtix/CXF tool)

n Proxy:
- A client-side object used to provide a local interface to a remote service.
- Generated from the WSDL by wsdl2java

n Servant:
- A server-side object that implements the operations defined in WSDL file
- Handwritten by the developer.

159 / 289

Overview of Celtix Development 12© IONA Technologies 2007

Generated code: the service class
@WebServiceClient(

name = "HelloWorldService",
targetNamespace =

"http://www.iona.com/ps/courseware/HelloWorld",
wsdlLocation = "./wsdl/HelloWorld.wsdl“

)
public class HelloWorldService extends Service
{

public HelloWorldService(URL wsdlLocation,
QName serviceName) {...}

@WebEndpoint(name = "SOAPOverHTTPEndpoint")
public HelloWorldI getSOAPOverHTTPEndpoint() {...}

}

Constructor takes
the WSDL
location and
service name

Method to create
a HelloWorld
proxy.

Service information,
declared using annotation.

160 / 289

http://www.iona.com/ps/courseware/HelloWorld

Overview of Celtix Development 13© IONA Technologies 2007

Generated code: the proxy interface

@WebService(
name = "HelloWorld",
targetNamespace =

"http://www.iona.com/ps/courseware/HelloWorld",
wsdlLocation = "./wsdl/HelloWorld.wsdl“

)
public interface HelloWorld
{

// some code & annotations omitted for clarity
//

public String sayHello(String message);
}

Service information,
declared using annotation.

Method generated
from WSDL
sayHello
operation.

Interface generated
from WSDL
HelloWorld
interface

161 / 289

http://www.iona.com/ps/courseware/HelloWorld

Overview of Celtix Development 14© IONA Technologies 2007

The servant
@WebService(
name = "HelloWorld",
serviceName = "HelloWorldService",
targetNamespace

="http://www.iona.com/ps/courseware/HelloWorld",
wsdlLocation = "./wsdl/HelloWorld.wsdl",
portName = "SOAPOverHTTPEndpoint"

)
public class HelloWorldImpl implements HelloWorld
{

public String sayHello(String message)
{

// Your implementation code goes here
}

}

Implement methods
in HelloWorld.

Implement HelloWorld
Interface.

162 / 289

http://www.iona.com/ps/courseware/HelloWorld

Overview of Celtix Development 15© IONA Technologies 2007

Directory Structure organization of HelloWorld
n The HelloWorld project uses the directory structure discussed in

the Structure of a Celtix Project section earlier in this chapter

n The src directory contains one package:

- Package helloworld (handwritten files)
-Client.java
-Server.java
-HelloWorldImpl.java

n The wsdl directory contains HelloWorld.wsdl

Note: it is a good idea to
keep handwritten code in a
separate package/directory
from generated code.

163 / 289

16Overview of Celtix Development © IONA Technologies 2007

Generating Code from WSDL Files

164 / 289

Overview of Celtix Development 17© IONA Technologies 2007

Generating code with wsdl2java
n Every web services product provide a tool to generate

programming APIs from WSDL:
- The Celtix tool is called wsdl2java
- It generates Java classes and compiles them

n Typical usage:
wsdl2java –s src –d classes –keep ./wsdl/HelloWorld.wsdl

n The command-line options are as follows:
-s src: put generated Java code into the source directory src.
-d classes: put compiled code into the destination directory classes.
-keep: keep the generated Java source code (it gets deleted by default).

n The wsdl2java tool generates many Java classes – you only
need to know those that correspond to your service interface and
types

165 / 289

Overview of Celtix Development 18© IONA Technologies 2007

Default package name
n The generated classes are placed in a Java package.

- The default package name is derived from the target namespace of the
WSDL document.

n Example: the namespace in HelloWorld.wsdl is:

http://www.iona.com/ps/courseware/HelloWorld

n This is converted to a package name as follows:
- The leading http://www is stripped
- The order of the domain name is reversed, giving com.iona
- The remaining components in the URL path are converted to lower case and

appended using a “.” separator, giving:
com.iona.ps.courseware.helloworld

166 / 289

http://www.iona.com/ps/courseware/HelloWorld

19Overview of Celtix Development © IONA Technologies 2007

Implementing the HelloWorld web service

167 / 289

Overview of Celtix Development 20© IONA Technologies 2007

Implementing the service
n Convention:

- Name of implementation class = <name-of-interface>Impl
- This is just a convention, and you’re free to ignore it.

n You may wish to explicitly implement the generated interface that
corresponds to the WSDL portType.

- This is optional.

n You should provide appropriate values for the @WebService
annotation.

- You should explicitly identify the service and port that this class implements.
- See next slide.

168 / 289

Overview of Celtix Development 21© IONA Technologies 2007

Implementing the service (cont’)
@WebService(
name = "HelloWorld",
serviceName = "HelloWorldService",
targetNamespace

="http://www.iona.com/ps/courseware/HelloWorld",
wsdlLocation = "./wsdl/HelloWorld.wsdl",
portName = "SOAPOverHTTPEndpoint"

)
public class HelloWorldImpl implements HelloWorld
{

public String sayHello(String message)
{

return "Hello right back at ya!";
}

}

169 / 289

http://www.iona.com/ps/courseware/HelloWorld

Overview of Celtix Development 22© IONA Technologies 2007

Implementing the server mainline
n A server mainline typically does the following:

- Create the servant (service implementation object)
- Register the servant as an “endpoint”

n The next slide show how to perform these tasks:
- A later chapter provides more detail on the API calls.

n You will need to import at least the following classes:

import javax.xml.ws.Endpoint;

170 / 289

Overview of Celtix Development 23© IONA Technologies 2007

Pseudo-code of server mainline

void main(String[] args)
{

Object helloWorldImpl = null;
String address = "http://localhost:9090/helloworld";

helloWorldImpl = new HelloWorldImpl();
Endpoint.publish(address, helloWorldImpl);

}
This method initializes the
transport and starts a pool
of threads to service
requests.

171 / 289

Overview of Celtix Development 24© IONA Technologies 2007

Aside: Endpoint.publish()
n The call to Endpoint.publish() is non-blocking – it returns

immediately.

n As a result the main-thread of the program will complete

n However, the program will not exit.
- It remains running because of the underlying pool of threads created by the

call to Endpoint.publish().

n This behavior may seem strange to non-Java programmers.

172 / 289

25Overview of Celtix Development © IONA Technologies 2007

Implementing the HelloWorld Client

173 / 289

Overview of Celtix Development 26© IONA Technologies 2007

Implementing the client
n A client mainline typically performs the following tasks:

- Declare the service QName and the location of the WSDL file.
- The term QName refers to a “qualified name”, containing a namespace

and, in this case, the service name.
- Create the service
- Use the service to create a proxy to the remote service implementation
- Invoke on the service.

n The next slides show how to perform these tasks:
- A later chapter provides more detail on the API calls.

174 / 289

Overview of Celtix Development 27© IONA Technologies 2007

Implementing the client (contd.)
n You will probably need to import at least the following classes:

import java.io.File;
import java.net.MalformedURLException;
import java.net.URL;
import javax.xml.namespace.QName;

175 / 289

Overview of Celtix Development 28© IONA Technologies 2007

Pseudo-code of client mainline
public static void main(String[] args)
{

QName serviceName = new QName(
"http://www.iona.com/ps/courseware/HelloWorld",
"HelloWorldService");

URL wsdlURL = null;
String wsdlFileLocation = "./wsdl/HelloWorld.wsdl";
try {

wsdlURL = new File(wsdlFileLocation).toURL();
}
catch (MalformedURLException e) {

System.out.println("Error creating a URL from file '" +
wsdlFileLocation + "'; details: " + e);

}

Identifies service in WSDL
file.

Specifies location of WSDL
file as a valid
javax.net.URL.

176 / 289

http://www.iona.com/ps/courseware/HelloWorld

Overview of Celtix Development 29© IONA Technologies 2007

Pseudo-code of client mainline (cont’)

HelloWorldService helloWorldService =
new HelloWorldService(wsdlURL, serviceName);

HelloWorld helloWorld =
helloWorldService.getPort(
new Qname(

“http://www.iona.com/ps/courseware/HelloWorld”,
“SOAPOverHTTPEndpoint”),

HelloWorld.class);

String response = helloWorld.sayHello("Hello!");

Creates a service object
using the wsdlURL and the
serviceName.

Creates a port for the
SOAP-over-HTTP endpoint.

Invokes the sayHello()
operation on the server.

177 / 289

http://www.iona.com/ps/courseware/HelloWorld

30Overview of Celtix Development © IONA Technologies 2007

Running the client and server

178 / 289

Overview of Celtix Development 31© IONA Technologies 2007

Running the client and server using Ant
n Ant can be used to launch Java processes.

- This has the advantage that the Java process will pick up the same
environment as that used to build the project.

- The “Hello, World” demo provides tasks to launch the client and server.
- While this is useful in development, it is not suitable for production due to the

unnecessary overhead of starting Ant and parsing the build.xml file.

n Open two command windows and go into the root directory of the
HelloWorld project

n In one window, run:
ant helloworld.Server

n In the other, run:
ant helloworld.Client

179 / 289

Overview of Celtix Development 32© IONA Technologies 2007

Running the client and server from a script
n Celtix clients and servers can also be run from the shell.

- You have to make sure that the CLASSPATH and other environment
variables are set correctly – this is best done in a script.

- The “Hello, World” demo provides scripts to run the client and server.
- Feel free to model your own startup scripts on those provided.

n Open two command windows and go into the root directory of the
HelloWorld project

n In one window, run:
helloworldserver

n In the other, run:
helloworldclient

180 / 289

Overview of Celtix Development 34© IONA Technologies 2007

Summary
n This chapter has shown how to develop a client and server using

Celtix, starting from a WSDL contract.

n A code generation tool, wsdl2java, is used to generate a proxy
interface and service class for the service.

n The proxy interface is extended to provide a service
implementation object.

n Server code creates the service implementation object, registers it
with an endpoint, and listens for requests.

n Client code creates a local service object, creates a proxy object,
and uses it to invoke on the server.

n An appropriate code organisation strategy was presented.

181 / 289

1Getting Started with Annotations © IONA Technologies 2007

Getting Started with Annotations
Java 5.0

182 / 289

Getting Started with Annotations 2© IONA Technologies 2007

Jax-WS Annotations
n JAX-WS relies on the annotation feature of Java 5.
n The JAX-WS annotations are used to specify the metadata used

to map the SEI to a fully specified service definition. Among the
information provided in the annotations are the following:

1. The target namespace for the service.
2. The name of the class used to hold the request message.
3. The name of the class used to hold the response message.
4. If an operation is a one way operation.
5. The binding style the service uses.
6. The name of the class used for any custom exceptions.
7. The namespaces under which the types used by the service are defined.

183 / 289

Getting Started with Annotations 3© IONA Technologies 2007

JAX-WS Annotations
n Most of the annotations have sensible defaults and do not need to

be specified.
n However, the more information you provide in the annotations, the

better defined your service definition.
n A solid service definition increases the likely hood that all parts of

a distributed application will work together.

184 / 289

Getting Started with Annotations 4© IONA Technologies 2007

Required Annotations
The @WebService annotation
n You must add the @WebService() annotation on both the SEI

and the implementation class
n The @WebService annotation is defined by the
javax.jws.WebService interface and it is placed on an
interface or a class that is intended to be used as a service.

185 / 289

Getting Started with Annotations 5© IONA Technologies 2007

@Webservice Annotation Properties

Property Description

name Specifies the name of the service interface. This property is mapped to the name attribute of the wsdl:portType element that defines the service's
interface in a WSDL contract. The default is to append PortType to the name of the implementation class.

targetNamespace Specifies the target namespace under which the service is defined. If this property is not specified, the target namespace is derived from the package
name.

serviceName Specifies the name of the published service. This property is mapped to the name attribute of the wsdl:service element that defines the published
service. The default is to use the name of the service's implementation class.

wsdlLocation Specifies the URI at which the service's WSDL contract is stored. The default is the URI at which the service is deployed.

endpointInterface Specifies the full name of the SEI that the implementation class implements. This property is only used when the attribute is used on a service
implementation class.

portName Specifies the name of the endpoint at which the service is published. This property is mapped to the name attribute of the wsdl:port element that
specifies the endpoint details for a published service. The default is the append Port to the name of the service's implementation class.

n The following table describes the properties of the @Webservice annotation.

186 / 289

Getting Started with Annotations 6© IONA Technologies 2007

Optional Annotations
The @SOAPBinding annotation
n The @SOAPBinding annotation is defined by the
javax.jws.soap.SOAPBinding interface. It provides details
about the SOAP binding used by the service when it is deployed.

n If the @SOAPBinding annotation is not specified, a service is
published using a wrapped doc/literal SOAP binding.

n You can put the @SOAPBinding annotation on the SEI and any of
the SEI's methods.

- When it is used on a method, setting of the method's @SOAPBinding
annotation take precedent.

187 / 289

Getting Started with Annotations 7© IONA Technologies 2007

The @SOAPBinding annotation

Property Values Description

style
Style.DOCUMENT
(default)
Style.RPC

Specifies the style of the SOAP message. If RPC style is specified, each message part within the SOAP
body is a parameter or return value and will appear inside a wrapper element within the soap:body
element. The message parts within the wrapper element correspond to operation parameters and
must appear in the same order as the parameters in the operation. If DOCUMENT style is specified,
the contents of the SOAP body must be a valid XML document, but its form is not as tightly
constrained.

use Use.LITERAL (default)
Use.ENCODED Specifies how the data of the SOAP message is streamed.

paramet
erStyle

ParameterStyle.BARE
ParameterStyle.WRAPP
ED (default)

Specifies how the method parameters, which correspond to message parts in a WSDL contract, are placed
into the SOAP message body. A parameter style of BARE means that each parameter is placed into the
message body as a child element of the message root. A parameter style of WRAPPED means that all
of the input parameters are wrapped into a single element on a request message and that all of the
output parameters are wrapped into a single element in the response message. If you set the style
to RPC you must use the WRAPPED parameter style.

n The following table describes the properties of the @SOAPBinding annotation.

188 / 289

Getting Started with Annotations 8© IONA Technologies 2007

The @WebMethod annotation

•The @WebMethod annotation is defined by the
javax.jws.WebMethod interface.

•It is placed on the methods in the SEI.
•The @WebMethod annotation provides the information that is
normally represented in the wsdl:operation element describing
the operation to which the method is associated.

189 / 289

Getting Started with Annotations 9© IONA Technologies 2007

The @Webmethod annotation
n The following table describes the properties of the @Webmethod annotation.

Property Description

operationName Specifies the value of the associated wsdl:operation element's name. The default value is the name of the method.

action Specifies the value of the soapAction attribute of the soap:operation element generated for the method. The default value
is an empty string.

exclude Specifies if the method should be excluded from the service interface. The default is false.

190 / 289

Getting Started with Annotations 10© IONA Technologies 2007

The @RequestWrapper annotation
n The @RequestWrapper annotation is defined by the
javax.xml.ws.RequestWrapper interface.

n It is placed on the methods in the SEI.
n As the name implies, @RequestWrapper specifies the Java class

that implements the wrapper bean for the method parameters that
are included in the request message sent in a remote invocation.

n It is also used to specify the element names, and namespaces,
used by the runtime when marshalling and unmarshalling the
request messages

191 / 289

Getting Started with Annotations 11© IONA Technologies 2007

The @RequestWrapper annotation

Property Description

localName Specifies the local name of the wrapper element in the XML representation of the request message. The default value is the name of
the method or the value of the @WebMethod annotation's operationName property.

targetNamespace Specifies the namespace under which the XML wrapper element is defined. The default value is the target namespace of the SEI.

className Specifies the full name of the Java class that implements the wrapper element.

n The following table describes the properties of the @RequestWrapper
annotation.

192 / 289

Getting Started with Annotations 12© IONA Technologies 2007

The @ResponseWrapper annotation

n The @ResponseWrapper annotation is defined by the
javax.xml.ws.ResponseWrapper interface.

n It is placed on the methods in the SEI. As the name implies,
@ResponseWrapper specifies the Java class that implements the
wrapper bean for the method parameters that are included in the
response message sent in a remote invocation.

n It is also used to specify the element names, and namespaces,
used by the runtime when marshalling and unmarshalling the
response messages.

193 / 289

Getting Started with Annotations 13© IONA Technologies 2007

The @ResponseWrapper annotation

Property Description

localName
Specifies the local name of the wrapper element in the XML representation of the response message. The default value is the
name of the method with Response appended or the value of the @WebMethod annotation's operationName property with
Response appended.

targetNamespace Specifies the namespace under which the XML wrapper element is defined. The default value is the target namespace of the SEI.

className Specifies the full name of the Java class that implements the wrapper element.

n The following table describes the properties of the @ResponseWrapper
annotation.

194 / 289

Getting Started with Annotations 14© IONA Technologies 2007

The @WebFault annotation
n The @WebFault annotation is defined by the
javax.xml.ws.WebFault interface.

n It is placed on methods in the SEI that throw exceptions.
n The @WebFault annotation is used to map the Java exception to a
wsdl:fault element. This information is used to marshall the
exceptions into a representation that can be processed by both the
service and its consumers.

195 / 289

Getting Started with Annotations 15© IONA Technologies 2007

The @WebFault annotation
n The following table describes the properties of the @WebFault annotation.

Property Description

name Specifies the local name of the fault element.

targetNamespace Specifies the namespace under which the fault element is defined. The default value is the target namespace of the SEI.

faultName Specifies the full name of the Java class that implements the exception.

196 / 289

Getting Started with Annotations 16© IONA Technologies 2007

The @OneWay annotation
n The @OneWay annotation is defined by the javax.jws.OneWay

interface.
n It is placed on the methods in the SEI that will not require a

response from the service.
n The @OneWay annotation tells the run time that it can optimize the

execution of the method by not waiting for a response and not
reserving any resources to process a response.

197 / 289

Getting Started with Annotations 17© IONA Technologies 2007

Defining Parameters with Annotations
The method parameters in the SEI correspond to the
wsdl:message elements and their wsdl:part elements.

JAX-WS provides annotations that allow you to describe the
wsdl:part elements that are generated for the method
parameters.

n The @WebParam annotation
n The @WebResult annotation

198 / 289

Getting Started with Annotations 18© IONA Technologies 2007

The @WebParam annotation
n The @WebParam annotation is defined by the
javax.jws.WebParam interface.

n It is placed on the parameters on the methods defined in the SEI.
n The @WebParam annotation allows you to specify the direction of

the parameter, if the parameter will be placed in the SOAP header,
and other properties of the generated wsdl:part.

199 / 289

Getting Started with Annotations 19© IONA Technologies 2007

The @WebParam annotation
n The following table describes the properties of the @WebParam annotation

Property Values Description

name

Specifies the name of the parameter as it appears in the WSDL. For RPC bindings, this is name of the wsdl:part
representing the parameter. For document bindings, this is the local name of the XML element
representing the parameter. The default is to use the name of the parameter as it appears in the method's
argument list.

targetNamespace Specifies the namespace for the parameter. It is only used with document bindings where the parameter
maps to an XML element. The defaults is to use the service's namespace.

mode

Mode.IN
(default)
Mode.OUT
Mode.INOUT

Specifies the direction of the parameter.

header false (default)
true Specifies if the parameter is passed as part of the SOAP header.

partName Specifies the value of the name attribute of the wsdl:part element for the parameter when the
binding is document.

200 / 289

Getting Started with Annotations 20© IONA Technologies 2007

The @WebResult annotation
n The @WebResult annotation is defined by the
javax.jws.WebResult interface.

n It is placed on the methods defined in the SEI.
n The @WebResult annotation allows you to specify the properties

of the generated wsdl:part that is generated for the method's
return value

201 / 289

Getting Started with Annotations 21© IONA Technologies 2007

The @WebResult annotation
n The following table describes the properties of the @WebResult annotation

Property Description

name
Specifies the name of the return value as it appears in the WSDL. For RPC bindings, this is name of the wsdl:part
representing the return value. For document bindings, this is the local name of the XML element representing
the return value. The default value is return.

targetNamespace Specifies the namespace for the return value. It is only used with document bindings where the return value
maps to an XML element. The defaults is to use the service's namespace.

header Specifies if the return value is passed as part of the SOAP header.

partName Specifies the value of the name attribute of the wsdl:part element for the return value when the binding is document.

202 / 289

Getting Started with Annotations 22© IONA Technologies 2007

Fully Annotated SEI
package org.apache.cxf;
import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
Import javax.jws.WebParam.*;
@WebService(name="quoteReporter")
@SOAPBinding(style=Style.RPC, use=Use.LITERAL)public interface quoteReporter
{ @WebMethod(operationName="getStockQuote")

@RequestWrapper(targetNamespace="http://demo.iona.com/types",
className="java.lang.String")

@ResponseWrapper(targetNamespace="http://demo.iona.com/types",
className="org.eric.demo.Quote")

@WebResult(targetNamespace="http://demo.iona.com/types",
name="updatedQuote") public Quote getQuote(

@WebParam(targetNamespace="http://demo.iona.com/types",
name="stockTicker",
mode=Mode.IN)

String ticker);
}

203 / 289

mailto:@SOAPBinding(style=Style.RPC
http://demo.iona.com/types
http://demo.iona.com/types
http://demo.iona.com/types
http://demo.iona.com/types

Getting Started with Annotations 24© IONA Technologies 2007

Summary
n This chapter has shown that JAX-WS annotations are used to

specify the metadata used to map the SEI to a fully specified
service definition

n Annotations play a critical role in JAX-WS 2.0.
n First, annotations are used in mapping Java to WSDL and schema.
n Second, annotations are used a runtime to control how the JAX-WS runtime processes

and responds to web service invocations
n This makes it possible to use “Java to WSDL” approach as the primary way for

developing Web services (for the server side) superceding JAX-RPC.
n Currently the annotations utilized by JAXR-WS 2.0 are defined in separate JSRs: 1) JSR

181: Web Services Metadata for the JavaTM Platform, 2) JSR 222: JavaTM Architecture for
XML Binding (JAXB) 2.0, 3) JSR 224: JavaTM API for XML Web Services (JAX-WS) 2.0,
4) JSR 250: Common Annotations for the JavaTM Platform.

204 / 289

1Getting Started with Celtix © IONA Technologies 2007

Getting Started with Celtix

205 / 289

Getting Started with Celtix 2© IONA Technologies 2007

Developing a Service using JAX-WS

You can develop a service using one of two approaches:
1. Start with a WSDL contract and generate Java objects to

implement the service.
2. Start with a Java object and service enable it using annotations.

For new development the preferred path is to design your services
in WSDL and then generate the code to implement them. This
approach enforces the concept that a service is an abstract entity
that is implementation neutral. It also means you can spend more
time working out the exact interface your service requires before
you start coding.

206 / 289

Getting Started with Celtix 3© IONA Technologies 2007

Existing Application Integration

Caveat: To service enable an existing
application

1. You will need to add annotations to the source
2. You will need to migrate your code to Java 5.0.

207 / 289

Getting Started with Celtix 4© IONA Technologies 2007

WSDL First Development
n Start with a WSDL document

- can be obtained from another developer, a system architect, a UDDI
registry, or you could write it yourself.

- must contain at least a fully specified logical interface

n Three Step process follows:
1. Generate starting point code.
2. Implement the service's operations.
3. Publish the implemented service

208 / 289

Getting Started with Celtix 5© IONA Technologies 2007

JAX-WS Implementation Mapping
n JAX-WS specifies a detailed mapping from a service defined in

WSDL to the Java classes that will implement that service.
- The logical interface, defined by the wsdl:portType element, is mapped to

a service endpoint interface (SEI).
- Any complex types defined in the WSDL are mapped into Java classes

following the mapping defined by the Java Architecture for XML Binding
(JAXB) specification.

- The endpoint defined by the wsdl:service element is also generated into a
Java class that is used by consumers to access endpoints implementing the
service.

209 / 289

Getting Started with Celtix 6© IONA Technologies 2007

Generating the Starting Point Code
The wsdl2java command automates the generation of this code.
n Provides options for:

- generating starting point code for your implementation
- creating an ant based makefile to build the application
- controlling the generated code.

wsdl2java -ant -impl -server -d outputDir myService.wsdl
n The command does the following:

• The -ant argument generates a Ant makefile, called build.xml, for your
application.

- The -impl argument generates a shell implementation class for each portType
element in the WSDL document.

- The -server argument generates a simple main() to launch your service as a
stand alone application

- The -d outputDir argument tells wsdl2java to write the generated code to a
directory called outputDir.

- myService.wsdl is the WSDL document from which code is generated.

210 / 289

Getting Started with Celtix 7© IONA Technologies 2007

Generated Files

File Description

portTypeName.java The SEI. This file contains the interface your service implements. You should not edit this file.

serviceName.java The endpoint. This file contains the Java class your clients will use to make requests on the service.

_portTypeName_Impl.java The skeleton implementation class. You will modify this file to implement your service.

_portTypeName_Server.java A basic server main() that allows you to deploy your service as a stand alone process.

211 / 289

Getting Started with Celtix 8© IONA Technologies 2007

Implementing the service
n Convention:

- Name of implementation class = <name-of-interface>Impl
- This is just a convention, and you’re free to ignore it.

n You may wish to explicitly implement the generated interface that
corresponds to the WSDL portType.

- This is optional.

n You should provide appropriate values for the @WebService
annotation.

- You should explicitly identify the service and port that this class implements.
- See next slide.

212 / 289

Getting Started with Celtix 9© IONA Technologies 2007

Implementing the service (cont’)
@javax.jws.WebService(portName = "SoapPort",
serviceName = "SOAPService", targetNamespace =
"http://apache.org/hello_world_soap_http",
endpointInterface =
"org.apache.hello_world_soap_http.Greeter")

public class HelloWorldImpl implements HelloWorld
{

public String sayHello(String message)
{

return "Hello right back at ya!";
}

}

213 / 289

http://apache.org/hello_world_soap_http

Getting Started with Celtix 10© IONA Technologies 2007

Java First Development
To create a service starting from Java you need to do the following:
1. Create a Service Endpoint Interface (SEI) that defines the methods

you wish to expose as a service.
n You can work directly from a Java class, but working from an interface is the

recommended approach. Interfaces are better for sharing with the
developers who will be responsible for developing the applications consuming
your service. The interface is smaller and does not provide any of the
service's implementation details.

2. Add the required annotations to your code.
3. Generate the WSDL contract for your service.

- Tip
If you intend to use the SEI as the service's contract, it is not necessary to
generate a WSDL contract

4. Publish the service.

214 / 289

Getting Started with Celtix 11© IONA Technologies 2007

Creating an SEI
n The service endpoint interface (SEI) is the piece of Java code that

is shared between a service and the consumers that make
requests on it.

n When starting with a WSDL contract, the SEI is generated by the
code generators. However, when starting from Java, it is the up to
a developer to create the SEI.

n If you have an existing set of functionality that is implemented as a
Java class and you want to service enable it, you will need to do
two things:

1. Create an SEI that contains only the operations that are going to be exposed
as part of the service.

2. Modify the existing Java class so that it implements the SEI.
- Note

You can add the JAX-WS annotations to a Java class, but that is not
recommended.

215 / 289

Getting Started with Celtix 12© IONA Technologies 2007

Simple Standard Interface (SEI)
package org.apache.cxf;
public interface quoteReporter
{ public Quote getQuote(String ticker);
}
In order to create a service from Java code you are only REQUIRED

to add one annotation to your code. You must add the
@WebService() annotation on both the SEI and the
implementation class.

216 / 289

Getting Started with Celtix 13© IONA Technologies 2007

Annotated SEI
package com.iona.demo;
Import javax.jws.*;
@WebService(name="quoteUpdater",
targetNamespace="http:\\cxf.apache.org",
serviceName="updateQuoteService",
wsdlLocation="http:\\cxf.apache.org\quoteExampleS
ervice?wsdl",
portName="updateQuotePort")

public interface quoteReporter
{ public Quote getQuote(String ticker);
}

217 / 289

Getting Started with Celtix 14© IONA Technologies 2007

Annotating the service implementation
n In addition to annotating the SEI with the @WebService

annotation, you also have to annotate the service implementation
class with the @WebService annotation.

n When adding the annotation to the service implementation class
you only need to specify the endpointInterface property. set
to the full name of the SEI.

package org.apache.cxf;
Import javax.jws.*;
@WebService(endpointInterface="org.apache.cxf.quote
Reporter")

public class stockQuoteReporter implements
quoteReporter

{public Quote getQuote(String ticker) { ... }}

218 / 289

Getting Started with Celtix 15© IONA Technologies 2007

Generate WSDL file
n Once you have annotated your code, you can generate a WSDL contract for

your service using the java2wsdl command.
n Example generated WSDL file
……….
<xs:complexType name="quote">

<xs:sequence>
<xs:element name="ID" type="xs:string" minOccurs="0"/>
<xs:element name="time" type="xs:string" minOccurs="0"/>
<xs:element name="val" type="xs:float"/>

</xs:sequence>
</xs:complexType>
</xsd:schema>
</wsdl:types>

<wsdl:message name="getStockQuote"> <wsdl:part name="stockTicker"
type="xsd:string"> </wsdl:part> </wsdl:message>

<wsdl:message name="getStockQuoteResponse"> <wsdl:part name="updatedQuote"
type="tns:quote"> </wsdl:part> </wsdl:message>

………………….

219 / 289

Getting Started with Celtix 17© IONA Technologies 2007

Summary
n This chapter has shown how to develop a client and server using

Celtix, starting from a WSDL contract.

n A code generation tool, wsdl2java, is used to generate a proxy
interface and service class for the service.

n The proxy interface is extended to provide a service
implementation object.

n Server code creates the service implementation object, registers it
with an endpoint, and listens for requests.

n Client code creates a local service object, creates a proxy object,
and uses it to invoke on the server.

n An appropriate code organization strategy was presented.

220 / 289

1Web Services Security © IONA Technologies 2007

Web Services Security

221 / 289

Web Services Security 2© IONA Technologies 2007

Introduction
n A full description of web services security is beyond the scope

of this material.
- Recommended reading:

- OASIS Web Services Security (WSS) Technical Committee –
http://www.oasis-open.org

- WS-I Basic Security Profile – http://www.ws-i.org

n No overall web services security architecture has yet been
defined.

- Such an architecture may include firewalls, proxies, security servers,
and identity management.

n WS-Security (from OASIS) is the accepted framework

n This section shows how web services can be made secure
using a combination of SSL/TLS (HTTPS) and WS-Security.

n Other specifications are discussed.

222 / 289

http://www.oasis-open.org
http://www.ws-i.org

Web Services Security 3© IONA Technologies 2007

What is security?
n Here are some general concepts of “secure” communications,

and what they mean to users…

n Confidentiality: We want to exclude uninvited listeners from
our private communications

- e.g. sending credit card numbers or social identity

n Authenticity: We want to verify the identity of each person we
talk to, so that we do not end up talking to an impostor

n Integrity: We want to protect the content of our conversation,
so that nobody can change it mid-stream, thereby causing
confusion or misunderstandings

223 / 289

Web Services Security 4© IONA Technologies 2007

What is security? (cont’)
n Other optional concepts…

n Access Control: Some people have more privileges than
others, allowing them to do things others cannot

- e.g. a bank manager can audit any teller’s transactions, but a teller
cannot even view the manager’s work

n Circle of Trust: Members of a group can share tasks, by
passing around the security credentials required to perform
these tasks

n Revocation: When people change jobs, or lose our trust
somehow, we must be able to exclude them from
conversations where they were welcome before

224 / 289

Web Services Security 5© IONA Technologies 2007

Web service attacks
n Web services are prone to a number of different kinds of

attack; for example:
- Snooping - as a non-binary plain-text protocol, SOAP messages are

easy to intercept and view.
- Man-in-the-middle attacks - messages can be easily intercepted,

modified and resent by malicious parties.
- Brute-force attacks - a malicious party can attempt to crack

username/passwords with a brute force approach.
- This is tedious for browser-based web-sites, but can be trivially

automated for web services.
- Denial of service (DOS) attacks - a malicious party can “hammer” your

server with large or incorrectly formed XML messages, in an attempt to
bring down your server or at least impair performance

- Data attacks - a malicious party might guess web service operations
parameters that affect your program logic and exploit this (see next
slide).

225 / 289

Web Services Security 6© IONA Technologies 2007

Web service attacks (cont’)
n SQL injection is an clever (and dangerous) form of data

attack.
- The malicious party sees a method that requires a username, for

example, “scott”.
- The malicious party guesses that you will run an SQL statement of the

form:
select * from users where username=‘scott’;

- They enter the following as a username:
xyz’; drop table users;

- This results in the following SQL statements
select * from users where username=‘xyz’; drop

table users;’;
- As a result, the select statement gives no result, and the user table is

dropped (removed!) from the database.

n This kind of attack is a motivating example: clever hackers will
exploit any weakness in your application.

226 / 289

Web Services Security 7© IONA Technologies 2007

Defend in depth; monitor for trouble
n In this session, we will show how to use SSL and WS-Security

to guard against snooping and man-in-the-middle attacks.
- These techniques provide confidentiality, message integrity,

authentication and authorisation.

n These techniques may form only part of your overall security
solution.

- They cannot protect against brute-force attacks
- They cannot protect against denial-of-service attacks

n You will need to use alternative techniques to protect against
DOS and brute-force attacks.

- Discuss with your IT department or Internet Service Provider on tools to
detect and protect from these attacks.

n Adopt the philosophy: “Defend in depth; monitor for trouble”.

227 / 289

8Web Services Security © IONA Technologies 2007

Cryptography and Public Key Infrastructure (PKI)

228 / 289

Web Services Security 9© IONA Technologies 2007

Cryptography and PKI
n Cryptology can be termed the mathematics of secrecy;

cryptography is the algorithmic application of those
mathematics

- Algorithms rely on keys (large constant numbers) to establish privacy
- Keys can be exchanged by parties who desire a private conversation
- Symmetric Algorithms – parties share keys

- Sharing is easy, but managing the shared keys is problematic
- Asymmetric Algorithms – parties use public and private keys as a pair in

a specific secret conversation
- Slower, but key management becomes easier

n Public Key Infrastructure (PKI) supports…
- Key Exchange – asymmetric public key algorithms, used to authenticate

one or both parties and derive a symmetric key
- Encryption – symmetric private key algorithms, used to encrypt/decrypt

messages and thus ensure confidentiality
- Hashing – algorithms for generating digital signatures, used to ensure

message integrity

229 / 289

Web Services Security 10© IONA Technologies 2007

Cryptography and PKI (cont’)
n Key exchange algorithms

- Most popular option is Rivest Shamir Adleman (RSA) public key
encryption using X.509v3 certificates

n Symmetric key encryption algorithms
- Data Encryption Standard (DES) with 56-bit key

n Secure hash algorithms
- SHA or Message Digest 5 (MD5)

n Cipher suites are collections of PKI algorithms
- For example, RSA_WITH_RC4_128_MD5 denotes a cipher suite

with…
- RSA public key exchange
- RC4 symmetric key encryption with 128-bit key
- MD5 hash digest signatures

- Different combinations offer trade-offs between performance and
strength

230 / 289

Web Services Security 11© IONA Technologies 2007

Cryptography and PKI (cont’)
n Security certificates (X.509)

- Used by clients and servers to encapsulate their keys
- X.509v3 format is the standard

n Certificate Authority (CA)
- Essentially a trusted 3rd party who vouches the identity of a user (a

X.500 DN) and the binding of that user to a public key

n Certificate Revocation List (CRL)
- Serial numbers for certificates that should be held or rejected

n PEM versus PKCS#12
- Portable file formats for sending security credentials
- PEM is a base64-encoded text file, usually containing certificates or a

CRL
- PKCS#12 is a binary file, usually containing certificates and a private

key

231 / 289

12Web Services Security © IONA Technologies 2007

Web Services and SSL

232 / 289

Web Services Security 13© IONA Technologies 2007

Web services and SSL
n For most users, web services security will begin with

encryption of the transport layer: that is, through the use of
HTTPS rather than HTTP.

n HTTPS makes use of SSL/TLS (Secure Sockets Layer /
Transport Layer Security), commonly abbreviated to just SSL.

- TLS is the successor to SSL v3.0
- SSL/TLS provides:

- Client- and server-side authentication with X.509 certificates.
- Confidentiality, Integrity, Protection against message-replay

n SSL/TLS often provides a key line-of-defence in web services
security.

- Due to the use of strong encryption, hackers cannot intercept, snoop, or
replay messages.

- However, SSL/TLS provides only limited support for authorisation.

233 / 289

Web Services Security 14© IONA Technologies 2007

server

Web services and SSL (cont’)
n Clients communicate using HTTPS: they will only

communicate with a server that provides a trusted certificate.
- This is called “server-side” authentication.

<<process>>
helloSrv

Client

<<process>>
helloClient

X509 Cert.

SOAP/
HTTPS

234 / 289

Web Services Security 15© IONA Technologies 2007

server

Web services and SSL (cont’)
n Servers can authenticate clients too: a server can be

configured to accept only trusted certificates.
- Further, the server can be configured to trust only certificates with

particular attributes; e.g. “department=finance”.

<<process>>
helloSrv

Client

<<process>>
helloClient

X509 Cert.

SOAP/
HTTPS

X509 Cert.

235 / 289

Web Services Security 16© IONA Technologies 2007

Some myths about SSL
n Myth #1 – SSL is always slower

- SSL handshake makes the first request slower
- Overhead for encryption/decryption of data thereafter is negligible
- Overheads depend on which cipher suite is selected

n Myth #2 – SSL can be cracked
- True for original 40-bit keys

- Can be cracked using brute-force, parallel computing attacks
- Not true for new 128-bit keys

- Non-exportable from US
- Modulus factorization for 2128 (or 3.402823669209385e+38)
- Joe Hacker can give up starting right now
- Time for alien technology or major advances in quantum computing

- Quantum Cryptography group in Los Alamos, NM have performed
key en/decryption using photons!!!!!

236 / 289

17Web Services Security © IONA Technologies 2007

Authentication and Authorisation

237 / 289

Web Services Security 18© IONA Technologies 2007

Authentication and authorisation
n SSL/TLS provides limited support for “authorisation”

- Authorisation is that part of your security infrastructure that decides who
is allowed do what.

n Authorisation typically involves sending some kind of
“credential” token with each message

- A username/password pair
- An X.509 certificate
- A Kerberos token.

n Credentials can be transmitted to the server in a number of
ways.

- HTTP-Basic Authentication can transmit username/password
- WSSE Header (i.e. an element in a SOAP header) can transmit

username/password, client’s X.509 certificate or other token.
- Client’s X.509 certificate can be read from the secure transport.

238 / 289

Web Services Security 19© IONA Technologies 2007

A note on header information
n Most transports (HTTP included) provide their own

mechanisms for transmission of header-information.
- Security information can be sent using the HTTP standard headers.

n SOAP messages themselves also contain a SOAP-header.
- Security information can also be sent using the HTTP standard

headers.

<?xml version="1.0"?>
<soap:Envelope>

<soap:Header>… or here …</soap:Header>
<soap:Body></soap:Body>

</soap:Envelope>

HTTP Header
Can put authentication information here.

239 / 289

Web Services Security 20© IONA Technologies 2007

n When authentication information (username/password, or
security token) is sent in the transport header, this is called
“message-level” authentication.

- Message-level authentication provides an advantage in that the SOAP
message does not have to be parsed in order to extract security
information.

n When authentication information is sent in the SOAP header
this is called “request-level” authentication.

- Request-level authentication ensures that authentication information
pertinent to this message is stored with the message, regardless of any
transport switching or persistence.

n The choice of message- or request-level authentication is up
to you.

- It is wise to support both kinds of access.

A note on header information (cont’)

240 / 289

Web Services Security 21© IONA Technologies 2007

HTTP-Basic message-level authentication
n The HTTP transport supports “basic authentication” where the

username/password is transmitted as a base64 encoded
string in the request header.

GET /path/file.html HTTP/1.0
Authorization: Basic <username:password>

n The use of the base-64 encoding obfuscates the
username/password information.

- Obfuscate: to conceal, confuse, muddle

n Obfuscation is not the same as encryption!
- Anyone with a knowledge of the base-64 algorithm can decode the

username and password

241 / 289

Web Services Security 22© IONA Technologies 2007

HTTP Basic Authentication (cont’)
n HTTP-Basic authentication should only be used over HTTPS

- Security credentials will then be properly encrypted

n All major SOAP toolkits provide a way to programmatically set
the username and password

242 / 289

Web Services Security 23© IONA Technologies 2007

WSSE request-level authentication
n The WS-Security specification from OASIS defines a

standardised way to transmit credentials as a SOAP header.
<SOAP-ENV:Header>

<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/…">
<wsse:UsernameToken>

<wsse:Username>scott</wsse:Username>
<wsse:Password>tiger</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

</SOAP-ENV:Header>

n WSSE (Web Services Security Extensions) headers are
supported by all major vendors.

n As the information is transmitted in plain-text, this should only
be used with SSL/TLS (i.e. HTTPS).

243 / 289

http://docs.oasis-open.org/wss/

Web Services Security 24© IONA Technologies 2007

WS-Security
n WS-Security has 3 major components

- Security tokens – username/password, X.509, Kerberos
- XML Encryption – reference list for encrypted SOAP body parts
- XML Signatures – reference list for digital signing of SOAP body parts

n Other profiles for SOAP Attachments (SwA), Rights
Expression Language (REL) tokens, and more…

n WS-Security is just part of the overall security framework
- A foundation for WS-Policy, WS-Trust, WS-Privacy, and other higher-

level WS specifications

244 / 289

Web Services Security 25© IONA Technologies 2007

Using credentials for role-based access
n When the messages arrives at the server, the credentials can

be accessed explicitly.
- Application code can then determine the roles assigned to the caller,

and thus whether the caller is allowed to invoke on the service or
operation.

n Some SOAP toolkits can provide support for user- or role-
based access out-of-the-box.

- Authorisation and authentication is turned on via configuration, and
requires little-or-no coding.
- Access Control Lists (ACLs) are used to configure access.

- Toolkits will generally provide adapters to popular security systems, or
may provide an adapter framework that allows you to write your own
custom adapters.

245 / 289

26Web Services Security © IONA Technologies 2007

Relevant Security Technologies and Standards

246 / 289

Web Services Security 27© IONA Technologies 2007

Relevant technologies and standards
n There is a long shopping-list of technologies and standards

that are relevant to web services security.
- These standards are complimentary and are not competing.

n SSL/TLS encryption - IETF (Internet Engineering Task Force).
- Often used on Web (HTTPS)
- Utilises public-key cryptographic systems (PKCS) for authentication and

encryption.

n XML Signature - W3C
- XML Signature allows an XML document (or its parts) to be signed to

enforce non-repudiation.
- Web services messages are XML documents; as such XML Signature

n XML Key Management Specification (XKMS) - W3C
- Allows a client to obtain key information (values, certificates,

management or trust data) from a web service.

247 / 289

Web Services Security 28© IONA Technologies 2007

Relevant technologies and standards (cont’)
n XML Encryption - W3C

- XML Signature allows an XML document (or its parts) to be encrypted.

n WS-Security - OASIS
- As we have seen, WS-Security is a framework for including security

information in SOAP headers.
- It supports authentication tokens such as X.509 and Kerberos, and

simple username/password tokens.
- Requesters and providers need to agree on token format – otherwise

no interoperability

n WS-Identity - W3C
- Addresses the issue of tracking an individual’s identity (username and

password) in a global framework.
- Liberty Alliance Project is a major player (www.libertyproject.org)
- Microsoft Passport also competed in this space, but has been

abandoned.

248 / 289

http://www.libertyproject.org)

Web Services Security 29© IONA Technologies 2007

Relevant technologies and standards (cont’)
n Access Control Markup Language (XACML) - OASIS

- Used to represent and evaluate access control policies for role-based
authorization

n Security Assertion Markup Language (SAML) - OASIS
- Defining and maintaining a standard, XML-based framework for

creating and exchanging security information between online partners

249 / 289

Web Services Security 31© IONA Technologies 2007

Summary
n Security is an important consideration in any web services

project.

n Secure transports like HTTPS provide on-the-wire encryption
and authentication.

n WS-Security Extenstions (WSSE) provides standardised
SOAP headers to carry authentication information.

- For example, username/password, kerberos ticket, or security token.

n Together, secure transports and WSSE can support message
integrity, privacy, authentication and authorisation.

- However, they cannot provide automatic protection against weaknesses
in your design or implementation.

n Adopt the policy: defend in depth; monitor for trouble.

250 / 289

1Celtix Client-side Programming © IONA Technologies 2007

Celtix Client-side
Programming

251 / 289

Celtix Client-side Programming 2© IONA Technologies 2007

Overview
n Much of Celtix/CXF client-side programming will use the API’s

generated by wsdl2java.

n The general approach is:
- Create a service object

- Note: a service object is a client-side representation of a remote service.
- Use the service object to get a proxy
- Invoke on the proxy

n We have seen this approach in the “Celtix Development” chapter.

n This chapter deals with other client-side issues.
- Different ways to get a proxy from the service object.
- How to override a service endpoint address using a request context.
- How to access the Celtix Bus object.

252 / 289

3Celtix Client-side Programming © IONA Technologies 2007

Obtaining a proxy from the service object.

253 / 289

Celtix Client-side Programming 4© IONA Technologies 2007

Static and dynamic port creation
n There are two ways to obtain a proxy object from the Service

object.
- Static: use the generated port creation methods
- Dynamic: use the generic getPort() method from the class
javax.xml.ws.Service.

n You can use whichever you prefer.
- The static approach is less code, and more intuitive to beginners.
- The dynamic approach is more flexible, as the endpoint details are not hard-

coded into your code-base.
- Using the dynamic approach you can defer the choice of endpoint to

runtime configuration.
- The dynamic approach is advocated in this course (and is the approach

shown earlier in the “Hello, World” example).

254 / 289

Celtix Client-side Programming 5© IONA Technologies 2007

Static port creation
n The JAX-WS mapping generates a static port creation method for

each port in your service.
- If a service contains ports called “SOAPOverHTTPEndpoint” and
“SOAPOverJMSEndpoint” then the methods
getSOAPOverHTTPEndpoint() and getSOAPOverJMSEndpoint() will
be generated on the client-side service object.

- You can uses these statically generated stubs to get service proxy objects.

n Example:

HelloWorldService helloWorldService =
new HelloWorldService(wsdlURL, serviceName);

HelloWorldI helloWorld =
helloWorldService.getSOAPOverHTTPEndpoint();

255 / 289

Celtix Client-side Programming 6© IONA Technologies 2007

Dynamic port creation
n The dynamic approach uses the getPort() method to create a

client-side proxy.
- getPort() requires two parameters:

- A QName that identifies the port.
- The endpoint interface class.

n Example:

HelloWorldService helloWorldService =
new HelloWorldService(wsdlURL, serviceName);

HelloWorldI helloWorld =
helloWorldService.getPort(
new QName("http://www.iona.com/ps/courseware/HelloWorld",

“SOAPOverHTTPEndpoint”),
HelloWorldI.class);

256 / 289

http://www.iona.com/ps/courseware/HelloWorld

7Celtix Client-side Programming © IONA Technologies 2007

Overriding a service endpoint address

257 / 289

Celtix Client-side Programming 8© IONA Technologies 2007

Overriding a service endpoint address
n A client reads a service’s endpoint address from the WSDL file.

<service name="HelloWorldService">
<port binding="tns:HelloWorld_DocLiteral_SOAPBinding"
name="SOAPOverHTTPEndpoint">
<soap:address location="http://localhost:9090/helloworld"/>
</port>

</service>

n This is often undesirable.
- What if the service has been deployed somewhere else?
- How do we cater for unit-test, system-test, production- and live versions of the

service?

n It is common practice to override the endpoint address in client
code, using the BindingProvider API.

258 / 289

Celtix Client-side Programming 9© IONA Technologies 2007

Interface javax.xml.ws.BindingProvider
n The JAX-WS specification defines a BindingProvider interface.

- Every client-side service proxy implements this interface.

n BindingProvider provides methods that operate on the
underlying implementation of the service proxy, for example:
- getRequestContext()
- getResponseContext()
- getBinding()

n The “request context” is a Map<String, Object>.
- When you invoke on a proxy, all properties in the request context are copied

into the message’s MessageContext.

n The request context determines how the message is handled.
- One use is to override the default endpoint address.

259 / 289

Celtix Client-side Programming 10© IONA Technologies 2007

Obtaining the request context
n To obtain the request context:

- Cast the service proxy to BindingProvider
- Invoke the getRequestContext() method
- Store the results in a Map<String, Object>.

n For example:
-

HelloWorldService helloWorldService
= new HelloWorldService(wsdlURL, serviceName);

HelloWorld helloWorld
= helloWorldService.getSOAPOverHTTPPort();

Map<String, Object> requestContext =
((BindingProvider) helloWorld).getRequestContext();

260 / 289

Celtix Client-side Programming 11© IONA Technologies 2007

Using the request context to specify the endpoint
n The JAX-WS specification has reserved a key in the request

context for specifying the endpoint address.
- “javax.xml.ws.service.endpoint.address”

n This key is stored as a public static final String in the
class BindingProvider under the name
ENDPOINT_ADDRESS_PROPERTY.

n Use the Map.put() method to specify an endpoint address:

requestContext.put(
BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"http://localhost:4321/helloworld”

);

261 / 289

12Celtix Client-side Programming © IONA Technologies 2007

The CXF Bus

262 / 289

Celtix Client-side Programming 13© IONA Technologies 2007

The CXF Bus
n At runtime, CXF creates a default Bus object.

- The Bus provides the underlying communication infrastructure used by proxy
objects.

- The Bus class is CXF-specific: is not part of the JAX-WS specification.

n Most of the time you will not need to access the Bus.
- The Bus is used transparently by service proxies.

n You can use the Bus to access to CXF implementation details:
- Configuration, interceptors, etc.
- These aspects of CXF are discussed elsewhere.
- The next slides show how to access the bus in the first instance.

263 / 289

Celtix Client-side Programming 14© IONA Technologies 2007

Getting an org.apache.cxf.Bus
n To get access to the Bus, use BusFactory.getDefaultBus().

- It returns the default Bus created by CXF.

n BusFactory is an interface.
- It is implemented by concrete implementations such as:

- org.apache.cxf.bus.cxf.CXFBusFactory; and,
- org.apache.cxf.bus.spring.CXFBusFactory.

- Use the BusFactoryHelper to get a concrete instance of the Bus.

n Sample usage:

import org.apache.cxf.Bus;

Bus bus = BusFactoryHelper.newInstance().getDefaultBus();

264 / 289

Celtix Client-side Programming 15© IONA Technologies 2007

Creating an org.apache.cxf.Bus
n You can create a Bus using BusFactory.createBus()

- You can then override the default bus using the setDefaultBus() method.

265 / 289

Celtix Client-side Programming 16© IONA Technologies 2007

Aside: using the Bus
n Most applications will not need to create their own Bus.

n This material has been presented for completeness.
- To give an insight into the underlying CXF implementation.
- So that more advanced users will know how to access the Bus.

n Keep in mind that the Bus class is specific to CXF – it is not part of
the JAX-WS specification.

- Any code you write that uses the Bus will not be portable to other JAX-WS
implementations.

266 / 289

Celtix Client-side Programming 18© IONA Technologies 2007

Summary
n Client-side programming in Celtix/CXF is largely a matter of using

the API’s generated from the WSDL contract.

n This chapter has shown:
- how to create service proxies using the static and dynamic approach;
- how to override the default endpoint address (as per the WSDL contract) in a

JAX-WS compliant way; and
- how to access the CXF Bus, which can be used to access CXF

implementation details.

267 / 289

1Celtix Server-side Programming © IONA Technologies 2007

Celtix/CXF Server-side
Programming

268 / 289

Celtix Server-side Programming 2© IONA Technologies 2007

Overview
n Implementing Celtix/CXF servers typically involves two classes:

- An implementation class, providing service functionality. The implementation
class implements the service endpoint interface.

- A server mainline class, providing a main() that creates and publishes
endpoints.

n We have seen this approach in the chapter on “Celtix
Development”

n In this session, we show how to:
- Create and publish endpoints using javax.xml.ws.Endpoint.
- Specify single- or multi-threaded servant access.
- Annotate a service implementation class.
- Access a MessageContext in the implementation class.

269 / 289

3Celtix Server-side Programming © IONA Technologies 2007

Creating and publishing endpoints

270 / 289

Celtix Server-side Programming 4© IONA Technologies 2007

Creating and publishing an Endpoint
n The server mainline creates implementation objects, and then

“publishes” them as Endpoint objects.
- To create an endpoint, use Endpoint.create(Object impl)
- An Endpoint only begins to listen when it is published.

n For example:

Endpoint hwep
= Endpoint.create(new HelloWorldImpl());

hwep.publish(“http://localhost:9090/helloworld”);

271 / 289

Celtix Server-side Programming 5© IONA Technologies 2007

Creating and publishing an Endpoint (cont’)
n These two steps can condensed by using the static version of
Endpoint.publish()

n For example:

Endpoint hwep = Endpoint.publish(
“http://localhost:9090/helloworld”,
new HelloWorldImpl()

);

272 / 289

Celtix Server-side Programming 6© IONA Technologies 2007

Endpoint methods
n The Endpoint class provides a number of useful methods.

n Endpoint.stop()
- Stop listening for events; once stopped, an endpoint cannot be restarted.
- To “restart”, you can create and publish a new Endpoint for the

implementation object.

n Endpoint.isPublished()
- Returns true if the Endpoint has been published.

n Endpoint.getBinding()
- Returns the Binding for the Endpoint; this is useful if you wish to add

handlers to the Endpoint.

n Endpoint.getProperties()
- Returns a Map<String, Object> containing Endpoint properties.

273 / 289

7Celtix Server-side Programming © IONA Technologies 2007

Server-side threading issues

274 / 289

Celtix Server-side Programming 8© IONA Technologies 2007

Server-side threading
n The JAX-WS specification mandates that service endpoints should

be designed for concurrent access.
- By default, endpoints are multi-threaded.

n If you need to synchronize access to critical sections of code then
there are two possibilities:

- Use the Java synchronize keyword to serialize access to critical code.
- Change the endpoint’s Executor to be single-threaded.

n An endpoint’s Executor can be set when the service is published,
as follows:

Endpoint ep = Endpoint.publish(address, implementor);
ep.setExecutor(Executors.createSingleThreadedExecutor());

275 / 289

Celtix Server-side Programming 9© IONA Technologies 2007

Server-side threading (cont’)
n You can write your own Executor class to implement more complex

threading algorithms.

n Advice: remember that your servant may be deployed in a servlet
engine or application server.

- Ensure that if single-threaded access is required then the appropriate single-
threaded Executor is loaded.
- How this is specified may differ from container to container.

- For maximum portability, mark all critical sections of code as synchronized
using the synchronize keyword.

276 / 289

10Celtix Server-side Programming © IONA Technologies 2007

Annotating a Service Implementation

277 / 289

Celtix Server-side Programming 11© IONA Technologies 2007

Inheritance of annotations
n A service implementation class typically implements the generated

service endpoint interface.

public class HelloWorldImpl implements HelloWorld
{
}

n As a result, the implementation class (HelloWorldImpl) inherits
the annotations from the service proxy interface (HelloWorld).

n The inherited annotations can be inappropriate.
- In particular, the @WebService.wsdlLocation annotation may be a hard-

coded absolute filename.
- This makes your code inflexible!

278 / 289

Celtix Server-side Programming 12© IONA Technologies 2007

Note on @WebService.wsdlLocation
n Annotations are set at compile-time; they cannot be changed

programmatically at run-time.

n The wsdlLocation used by your implementation object must
provide a valid WSDL contract at server startup.

n A reasonable approach is to specify wsdlLocation values
relative to the project root directory – see next slide.

279 / 289

Celtix Server-side Programming 13© IONA Technologies 2007

Overriding the @WebService annotation
n Below we explicitly declare the @WebService annotation:

@WebService(
name = "HelloWorld",
targetNamespace =
"http://www.celtix.org/courseware/HelloWorld",

wsdlLocation = "./wsdl/HelloWorld.wsdl"
)
public class HelloWorldImpl implements HelloWorld
{
}

n @WebService.wsdlLocation is now relative to the project root
directory, where we start up our server.

280 / 289

http://www.celtix.org/courseware/HelloWorld

Celtix Server-side Programming 14© IONA Technologies 2007

Note: resolving @WebService.wsdlLocation
n A wsdlLocation like “./wsdl/HelloWorld.wsdl” is more flexible

than an absolute path.

n However, it is not ideal.
- What if the server is started from a directory other than the project root?

n We could instead use a URL.
- However, then the endpoint can only be created if a network connection is

present and the URL can be resolved

n In the future, Celtix will provide an XML “catalog facility”
- It will map remote URL locations to local files, allowing the use of URLs in

wsdlLocation without the need for a network connection.

281 / 289

15Celtix Server-side Programming © IONA Technologies 2007

Using the MessageContext

282 / 289

Celtix Server-side Programming 16© IONA Technologies 2007

javax.xml.ws.handler.MessageContext
n The MessageContext is a server-side object.

n MessageContext contains useful information about the currently
executing operation.

- For example, HTTP request headers, WSDL operation name, etc.
- Customized message handlers can also use the MessageContext to pass

information to the service implementation.

n The current MessageContext can be obtained from the class
javax.xml.ws.WebServiceContext.

n The WebServiceContext is declared in your implementation
class using the Java 1.5 resource injection approach.

- The next slides give a brief overview of resource injection.

283 / 289

Celtix Server-side Programming 17© IONA Technologies 2007

Aside: resource injection
n It is quite common for classes to make use of references to well-

known resources.
- Typically, your code must declare an instance of the object, and then initialize

the object.

n As an illustrative example:

public class CustomerInformation
{

private BackEndDataObject bedo;
CustomerInformation() {
bedo = new BackEndDataObject.instance();

}
}

284 / 289

Celtix Server-side Programming 18© IONA Technologies 2007

Aside: resource injection (cont’)
n JSR 250, implemented in Java 1.5, allows you to inject resources.

- Resource injection allows you to delegate the responsibility for creating
certain dependent objects to someone else, typically an underlying container.

public class CustomerInformation
{

@Resource
private BackEndDataObject bedo;

// No need to instantiate bedo, it will be done for
// us automatically by the container!

}

n Injected resources are used in the same was as any other member
variable.

285 / 289

Celtix Server-side Programming 19© IONA Technologies 2007

Declaring WebServiceContext as a resource
n Recall: we need to create a WebServiceContext; it will then be

used to obtain the MessageContext.

n The WebServiceContext can be declared using resource
injection as follows:

public class HelloWorldImpl implements HelloWorld
{

@Resource
private WebServiceContext context;

}

286 / 289

Celtix Server-side Programming 20© IONA Technologies 2007

Obtaining the MessageContext
n Use the WebServiceContext.getMessageContext() method

as follows:

public String sayHello(String message)
{

MessageContext messageContext =
context.getMessageContext();

}

n The MessageContext extends java.util.Map.
- Use the get() method to extract values from the MessageContext.

287 / 289

Celtix Server-side Programming 21© IONA Technologies 2007

Using the MessageContext
n The String constants in the MessageContext class can be

used as keys when calling MessageContext.get().

n For example, the following code obtains the HTTP requests
headers for the current message.

public String sayHello(String message)
{

MessageContext messageContext =
context.getMessageContext();

Map httpRequestHeaders = (Map)
messageContext.get(MessageContext.HTTP_REQUEST_HEADERS);

}

288 / 289

Celtix Server-side Programming 23© IONA Technologies 2007

Summary
n Server-side programming with Celtix/CXF can be characterized as:

- Implement the service endpoint interface
- Write a server mainline to create and publish endpoints

n This session has shown how to:
- Use the Endpoint class to create(), publish() and stop() endpoints.
- Provide suitable @WebService annotations for your implementation class.
- Access the current MessageContext from within your implementation class.

289 / 289

