
SOA BLUEPRINT – REFERENCE ARCHITECTURE
VERSION 1.1

SOA Alliance
Group of SOA Practitioners

Abstract
Service Oriented Architecture (SOA) is the business
operations strategy for leveraging information to meet
organizational objectives such as growing revenue,
increasing customer satisfaction and improving product
quality.

SOA is not a well traveled road and lacks many of the
shared experiences, assets and patterns required for
widespread and reliable adoption. Moreover, without a
common language and industry blueprints, SOA may
fail to deliver the promised benefits of intra and inter-
enterprise services reuse and process interoperability –
instead adding more custom logic and increased
complexity to IT infrastructure..

A group of SOA Practitioners have agreed to come
together under the SOA Alliance to provide leadership
in the industry to address the challenges. The SOA
Blueprint is envisioned as a multi-volume collection of
publications that can act as a standard reference
encyclopedia for all SOA stakeholders. This document,
the SOA Reference Architecture, is an early asset
created as part of the broader SOA Blueprint initiative.
It is intended to provide the end user / consumer
perspective which hopefully will influence both the
vendor community and the standards organizations.

Keywords
Service Oriented Architecture, SOA, SOA Alliance

Introduction

Today, there is a lot of hype around SOA and it is
expected to continue until the industry matures. SOA is
not a well traveled road and has the potential for failing
to deliver the promised benefits of intra and inter-
enterprise services reuse and process interoperability.
Instead, it may add more custom logic and propagate
the IT legacy. Following are some of the reasons for
concern that SOA may not deliver on its promises.

• Every major vendor claims to have adopted SOA
and have published their own view and reference
architecture around SOA.

• Every major standards body has multiple working
or expert groups attempting to define the SOA
Blueprint or SOA Reference Architecture from
their point of view.

• Even though SOA is in the initial phases, there are
not sufficient development and management tools.

• Enterprises are attempting to solve similar
problems but without a forum for sharing best
practices across the industry. Various product
vendors, system integrators, analysts have all
attempted to share these practices – however, the
information may have been lost in translation
because of lack of common vocabulary across the
industry.

These conditions add to the confusion resulting in
delayed adoption of SOA.

SOA Reference Architecture – Definition

The SOA Reference Architecture is an ideal “Target
State” architecture for an Enterprise or Line-Of-
Business (LOB). Some also refer to this as the “Future
State” or “Future Vision” of the Enterprise. The
objective of the SOA Blueprint is to provide
enterprises the ability to build a Roadmap to start the
journey to the Target State from their Current State.

SOA Reference Architecture Approach
One needs to understand two aspects of SOA to be able
to develop the reference architecture:

• The three SOA Foundation components that drive
Service Oriented Architecture

• Enterprise SOA Maturity Model

SOA Foundation

The SOA Foundation components are illustrated in the
figure below.

Figure 1 -- SOA Foundation

The three foundation components are:

• Business Architecture: Based on the business
strategy, objectives, priorities and processes.
Getting this right is essential for the successful
implementation of SOA. One of the major benefits
of SOA is reuse of business processes which
provides higher ROI than the potential reuse of
Infrastructure or Data components. This also
includes the business processes as well as
implementation of business applications.

• Infrastructure Architecture: This is the engine that
enables SOA and should address all the aspects of
the infrastructure from networks, servers, data
centers, firewalls, to application infrastructure,
security, monitoring, middleware, etc.

• Information and Data Architecture: This deals
with identifying the Key Performance Indicators
and the information needs that drive the enterprise.
Data Architecture deals with the logical and
physical modeling of the data as well as data
manipulation and data quality.

The SOA Reference architecture covers each of these
areas at length by providing approaches, requirements
and design patterns wherever possible.

Enterprise SOA Maturity Model
The SOA maturity model helps enterprises develop a
roadmap to achieve their Target State.

Figure 2 – Enterprise SOA Maturity Model

The above diagram illustrated the enterprise SOA
maturity model which can be classified into following
stages.

• Web Application Development Stage: Provide
browser based business solutions to both internal
and external users. This could be in the form of
rolling out web based CRM, ERP or custom
applications. In addition, IT organizations would
typically deploy enterprise services such as content
management, search, instant messaging, discussion
forums, white board, etc.

• Develop Composite Applications: Access and
provide aggregated information from multiple
sources to the users, initially internally and later
externally. This generally requires focus on
improving data quality.

• Automate Business Process: This is the stage
where the applications, data and infrastructure
work with the user to provide the capability that
need to perform their roles effectively in the
organizations. It empowers them by providing the
right information at the right time. It is this stage
where the enterprise matures and is enabled to
achieve higher ROI by consolidating multiple
business systems to a single system. This also
requires business organizations to transform from
their current state to the target state of end-to-end
business process management, rather than point
solutions.

SOA Reference Architecture

The following diagram illustrates the SOA Reference
Architecture which is categorized into three tiers –
Web Application Tier, Service Tier and Application
Tier.

Figure 3 -- SOA Reference Architecture

It is not necessary for IT organizations to deploy the
entire infrastructure identified in this SOA Reference
Architecture. One of the SOA Best Practices is to
invest in the infrastructure only whenever it is required
to provide business solutions. Following is a brief
description of each of the components:

Web Application Tier
The primary requirement for this tier is that all the
business systems / solutions should be accessible from
any (supported) browser. To a large extent, this is the
user interface or the presentation tier and shall contain
business logic for components such as enterprise
infrastructure services, applications, etc.

Packaged Applications

Typically enterprises tend to go out in the market and
license the best of the breed packaged applications that
meet their businesses requirements. IT organizations,
either themselves or by leveraging the System
Integrators, then tailor the packaged applications to
meet their needs. Examples of such packaged
applications are Customer Relationship Management
(Call Center, Sales Force Automation, Campaign
Management, Order Management, etc.), Enterprise
Resource Planning (Human Resources, Finance,

Contract Management, etc.) or other industry-specific
large application suites.

Most of the packaged applications are now internet
protocol based which means that users can access
many of its functions using any (supported) browser.
Some of the latest versions of the packaged application
have provided the capability to expose a limited set of
functions as discrete callable services or externally
controlled business processes.

Some of the best practices for leveraging packaged
applications include:
• Identify and implement the best of the breed

packaged applications that meet the business
requirement.

• Limit the amount of custom development
requirement making it easier and cheaper to
maintain and upgrade.

• Attempt to achieve one standard implementation
worldwide.

• Leverage the UI and the business process provided
by the packaged applications, wherever possible.

• Leverage Published API’s rather than directly
accessing the DB.

Following are recommended approaches for taking the
Packaged Application through the SOA Maturity
Model:

1. Develop Web Applications
• Deploy the latest version of the application that is

accessible by any browser; preferably a version
that supports appropriate portal standards such as
WSRP.

• Expose application services for consumption by
Custom Applications, preferably as web services.
This may require an adapter to enable access the
application. Some recent versions of applications
provide Integration Gateways or Web Services
access directly to the application services.

• Provide seamless user experience by incorporating
the enterprise look and feel (templates, skins,
skeletons, CSS) as well as integrating with the
enterprise Single Sign-On Solution.

• Externalize Authentication by integrating to the
Enterprise Identity and Access Manger (typically
LDAP).

2. Develop Composite Applications
• Identify business objects that could be shared

across the enterprise as composite applications.
• Send event notifications (triggers) to the composite

applications to initiative specific actions.
• Modify business processes and user interfaces as

required to enable the composite applications.
• Expose additional business services to enable the

composite applications to synchronize / update the
packaged application.

3. Automate Business Processes
• Understand and model business processes to

identify opportunities for re-engineering.
• Identify re-usable portions of business processes

that can potentially be automated by a business
process engine.

• Expand the number of services and business
processes already exposed in the prior stage.

• Reduce / consolidate the number of applications
deployed.

Custom Applications

Organizations may prefer to create a distinct brand and
unique experience for their customers and partners that
is significantly different than the one offered by the
off-the-shelf packaged applications. This requires
providing a consistent seamless interface to the users
(both internal and external). Packaged applications
have the following limitations in this regard:

• Making modifications to the user navigation or
user interface for some of the core transactions is
not easy.

• As most of the major packaged applications are
not based on open/standard technologies, their
performance may not scale to the business needs.

• Proprietary development model makes it difficult
to find resources or rapidly deploy new business
capability.

• Integration to other technology is not straight
forward resulting in point-to-point integration and
possibly poor data quality.

Following are some options for developing custom
applications.
1. Develop and deploy custom applications on an

Application Server
2. Develop and deploy custom applications by

leveraging a Portal
3. Develop a thick client either using tools based on

open standards or proprietary development tools

This document shall focus on options 1 and 2. The first
step for IT organizations is to determine the approach,
infrastructure and tools for developing custom
applications. In addition, IT organizations need to
define the governance and organization model to
develop the custom solution. This is not in scope for
the SOA Reference Architecture document.

A short note on the thick client custom applications;
these applications are typically developed using
SWING, Visual Studio or similar other tools. Most of
these thick clients need to interface with some external
systems and the recommended approach would be to
leverage open standards such as SOAP, Web Services,
XMPP, WebDAV etc. instead of directly accessing any
external resources such as databases, file systems or the
like. This approach makes it easier for IT organizations
to support and upgrade the integration.

Custom Applications Business Requirements
Typically most enterprises have already deployed
external sites as well as multiple internal
sites/applications to support the diverse needs of each
of the business units. These are most probably built in
silos and the first step is to standardize (unify) the look
feel and the infrastructure across the enterprise which
shall make it easier for a customer, partner and an
employee to get the information they are seeking.

Following are the business requirements for this phase
which are based on various survey feedbacks from
users and discussion with various business units.
• Unify user experience on the external site, making

it easy for potential users, partners, customers and

analysts to find information that they are looking
for.

• Standardize the look and feel across all sites
(internal and external) as well as process and
procedures for publishing content.

• Create one my<company name> site for all
employees, contractors, partners, customers to
personalize the services/content.

• Provide secure access to confidential information
for all sites (internal and external).

• Provide a highly reliable, available and scalable
environment.

• Facilitate branding and accessing multiple
application through a common portal.

• Allow users to login once and gain access to all
their services.

• Ability to personalize service based on roles and
responsibility of the user.

• Reduce maintenance cost of maintaining multiple
systems/applications; standardize on one
platform/environment.

• Standardize on one look and feel; eliminate
multiple user training requirements.

• Reduce operations and support cost to enable IT to
deploy scarce resources on developing new
functionality.

Custom Applications Architecture Approach
As Portals provide a proven set of capabilities in
support of the presentation later, most IT organizations
have started standardizing on a portal for developing
custom applications. Following is a recommended
architecture approach.

Figure 4 – Custom Application Architecture

This proposed architecture would provide the
following benefits:

• Based on SOA which promotes re-use at all levels.
• Provides capabilities to deliver in weeks not

months (once there is a stable framework in place).
• Leverage each product for what it is good at,

example: Portal for presentation based on
entitlements.

• Allow business to combine services to deliver new
capabilities.

• Domain Layer abstracts the data source and the
relationship, thereby minimizing the impact of
changes to the source systems.

• Loosely coupling Presentation from the business
logic makes it reliable and scalable.

• Consistent with SOA principles.

Following are the roles of each of the layers in the
proposed architecture:

1. Presentation Layer: A Portal is responsible for

handling all presentation services. Portlets drive
the user experience where a portlet is a view on an
application.

2. Business Delegate Layer: Components
responsible for the communication between the
presentation and the business layers. Business
Delegates abstract the communication details and
complexities involved in making a call to the
business layer. It includes a Model View
Controller framework that facilitates the user
navigating through the web site.

3. Services Layer: The Services Layer utilizes the
capabilities of the Application Server. It is
composed of stateless functions that expose high-
level business functionality. It includes a Session
Façade which is the entry point to the business
layer. Session Facades abstract away the details of
handling fine-grained business entities from the
presentation layers. Most of the business logic can
be implemented directly on Session Facades or on
a sub-layer commonly designated as Application
Objects.

4. Domain Layer: The Domain Layer also utilizes
the capabilities of the core Application Server. It
is a collection of business entities that define
persistent business concepts. Technologies that
handle database storage need to be used in this
layer since these components represent persistent
state. Entity Beans are an example of technology

than can be used to implement some of the
components of the Object Model. Alternatively
Plain Old Java Objects (POJO) can be used with
the help of Data Access Objects (DAO) for
persistence. Entity Beans are the preferred
mechanism to implement this layer but a
combination of technologies may be required
depending on the complexity of the Object Model.

Custom Application Framework Components
Custom Application Framework Components basically
extend services which are inherent in the application
server platform. Following are the list of Framework
Components.

1. Data Services: This is basically the persistence

layer provided for the applications. The container
management is robust enough these days to
leverage CMP for most of the simple transactions.
It would be also be prudent to provide DAO as an
option for handling any complex transactions.

2. Logging Services: Every enterprise should
standardize the logging services used by
applications and is best to leverage the features
provided by JDK 1.4. Various types of message
could be logged such as debug messages to trace
any issues, error or fault logging for diagnostic
purposes, activity logging for audit trail and usage
analysis, etc. If the logging service is generic
across the enterprise, it will enable the staff to
more effectively determine performance or
transaction bottlenecks. Logging Services involve
standardizing the mechanism, communicating it to
the entire development community within the
enterprise, and ensuring compliance with the
standard. No specific code needs to be developed
for this service.

3. Exception Handling: This is similar to logging
services in that standard application server
capabilities should be leveraged. The task is to
decide what mechanism to use and communicate it
to the entire development community within the
enterprise. No specific code needs to be developed
for this service but it would be useful if examples
of handling exception are also provided.

4. Deployment/Application Configuration: This
also involves standardizing the mechanism of
deploying an application in every environment,
development, QA, UAT, staging and production.
The document should also contain details on how
to build and deploy the applications across the
various environments.

5. Monitoring: There is a need for operations staff to
monitor the platform and applications and
proactively resolve issues. In addition, most
external sites have an uptime requirement of over
99%. Typically all operations departments within
IT would already have identified and deployed a
monitoring tool. There is a need to standardize and
document the development requirements to
integrate with the applications or platform used by
the existing monitoring tool. In some case, there
would also be a need to for additional specialized
monitoring tool which may need to be purchased
or developed and deployed.

6. Search Framework: Most portal applications
need to present data in a tabular format to the
users. Instead of each developer attempting to
resolve this problem it makes sense to develop a
“search framework” which could be leveraged.
The following diagram illustrates the architecture
approach to the Search Framework.

Figure 5 – Search Framework

Following are the functionality provided by the
search framework:
• Dynamic query generation based on user input

• Sort order, joins, etc.
• Count total search results for display

purposes
• Consistent mechanism for handling searches

• Character escaping and wildcard
interpretation

• Pagination
• Abstract all database access code from

application
• Criteria used as input

• Search results required in standards such
as java.util.List

• Queries reside on external files
• Utilities to handle common UI tasks

• Pagination
• Criteria Persistence

7. Notification Framework: The objective of this

component is to provide a single notification client
to all applications, support Synchronous and
Asynchronous interface to the Notification Engine
and also provide capability to send notification
through multiple channels.

Figure 6 – Notification Framework

The interface to the various channels could be
developed as required for providing the business
capability.

8. Service Proxy Framework: Allows services to be

deployed either locally or remotely without the
calling application needing to know the
implementation details or location of the service.
The concept is very simple; the service locater
determines the location of the service and calls it
in the appropriate fashion. It would support
multiple proxies such as EJB, Web Service and
Service Bus Proxy; additional proxy types can be
developed as required. This could also be
leveraged by the Business Delegate to separate the
presentation layer from the service layer.

Figure 7 – Service Proxy

9. Security Framework: Today, most application

project teams develop their own security layer,
especially as the current enterprise security
solutions do not meet all their business needs.
There is a need to develop a security framework,
that supports the client side to reduce, if not
eliminate the need for developing custom security
code. Following are some of those function
features required to be supported by the Security
Framework:

• Single-Sign-On (SSO): capability to login

once and be able to traverse from application
to application without having to login again.

• Access Control” a set of security features that
addresses three main areas:
• Authentication: determining the identity

of the user interacting with the
applications.

• Authorization: determining if a user is
allowed to perform a particular action.

• Auditing: tracking the actions performed
by the users.

Several secondary services are also required such
as registration, entitlement granting and
entitlement querying. These features should be
provided as a generic framework that can be used
and reused by different applications, each with
slightly different needs but all having the same
basic requirements.

• Identity Management – Typically in a large

organization, there are multiple stores for
managing the access control information for a

set of applications / services. This may result
in severe management problems. Identity
Management helps by centralizing the access
control management capability, as well as
provisioning the users across the enterprise.

• Consolidated User Profile: This is a capability
provided by the Portal to enable the
application to extend the base profile. This is
typically done by extracting the user profile
from multiple data sources, such as the base
profile and the application specific profile that
is extracted from the application specific
repository.

• Registration, Delegated Administration,
Provisioning, Repository: These are basically
security extensions built on top of Access
Control to meet the application specific
business needs. Alternately, these could be
packaged solutions that can be easily
integrated with Access Control.

Note that most of these capabilities are generally
provided off-the-self by a Portal product. IT
organizations will either have to develop and
support this capability if they do not own a Portal
for developing custom applications.

Portal Services
The primary function of the portal services is to
manage the presentation tier of the application. As the
presentation is generally based on entitlements, there is
a need to support this capability.

1. Presentation: The objective is to leverage the

Portal presentation capability by providing the
skins/templates/skeletons/Style sheets etc. for each
of the application teams. This should also include
some sample applications to jumpstart the
application developing, including leveraging the
portal navigation capability, both for vertical
navigation bars as well as horizontal tabs.

2. Personalization: Personalization services, such as
portlet layout, background template selection, etc.,
are provided by the Portal during this phase.
Additional personalization, in context to the
application shall be discussed further in the profile
management section of Enterprise Security.

3. Authentication: All Portal products provide this
capability and the best practices are to externalize
this service. Generally most, if not all, enterprises
have implemented a global directory services
(such as LDAP) within the enterprise. The Custom
Application Framework should provide an
authentication interface and externalize the

service.

4. Single Sign-On (SSO): This enables the enterprse
to provide a seamless user experience by not
requiring multiple logins. This Framework
component should not only support custom
applications, is should also support Packaged
Applications and Enterprise Services.

Enterprise Infrastructure Services
These are services (based on applications) that could
potentially be leveraged by the entire user community
(external and internal). Most enterprise services are
infrastructure components and some of them provide
the capability for users to leverage them as an
application. Following are some examples of
Enterprise Services.

1. Directory Service: This is the standard directory

services provided enterprise wide and generally
deployed in conjunction with the eMail service.
Most of the enterprise implement meta-directory
for managing identity across the enterprise.

2. Personal Information Management: This is the
basically the standard eMail, Calendar, Address
book, etc. and includes access to this information
from any channel (browser, thick client, mobile
devices, etc.).

3. Collaboration: This provides capabilities such as
white board, conference calling, instant messaging,
discussion forums, news groups, workspace, etc.

4. Enterprise Content Management System: This
is the infrastructure service for driving custom
applications such as Knowledge Management,
Asset / Contract Management, Collaboration, etc.
The recommended architecture approach is to
leverage the APIs provided by the portal or the
content management provider. All the content
management system market leaders provide the
capability to develop templates for uploading /
authoring content as well as workflow for
managing approval process.

Following are the best practices for implementing
the enterprise content management system:
• Define the Taxonomy up front, ideally

creating one that is enterprise wide.
• Create a single document base/repository,

enterprise wide. This may not be practical, but
is a good goal.

• Publish all content to one single location in
production and configure all applications to

retrieve content from that location (reduces
TCO).

• A key success factor is end user training for
the authors and the content approvers.

• Partner closely with the content management
system provider by engaging their Architects
for every project, especially during the design
phase of the project.

• Leverage the pre-built portlets to author,
review and manage the content.

• Engage a specialized function person from
either your SI or Content Management System
(CMS) provider to map the business processes
to CMS workflow.

5. Search Service: Any user (external or internal)

should have the ability to find the information they
are authorized to access. There are two types of
search solutions:
1. Key Word Search: standard search capability

that most users are accustomed to.
2. Natural Language Search: this is generally

targeted towards a non-technical / internet
savvy user who has just been introduced to
technology and want to find information by
asking questions using their local language.

The integration of a search engines is straight
forward. It is generally an XML / HTTP request to
the search engine and the engine returns the results
in the order requested.

The search engine goes hand in hand with the
content management system. Following are some

of the best practices based on our experience.
• Create one taxonomy enterprise wide for the

content management system.
• Define meta-tags for the content and leverage

them in the Portal to present content to the
users (based on their entitlements).

• Use search engines to crawl and create
multiple collections / sub-collections as
required

• Leverage federated search between various
business units, if required.

• Leverage portal tags and entitlements to
protect secure contents.

• Recommend storing secure content at the
application server level.

One of the major issues potentially encountered by
large sites is the time taken to crawl the entire
content repository. There are few alternatives to
help resolve this issue such as creating multiple
collections and including all the collections in the
search criteria, performing partial crawls on a
periodic basis, setting up multiple search engines
and leveraging federated search, etc. The right
strategy to be adopted would be based on the
business needs. Our recommendation is to develop
the architecture and the process in collaboration
with the search solution provider/vendor.

Enterprise (Role-Based) Portal
On implementing the Web Tier Components defined in
this document, enterprises would achieve the “Current
State” as illustrated in the diagram below.

Figure 8 -- Enterprise (Role Based) Portal

In the current state, IT organizations can rapidly deploy
business solutions in the form of customer applications,
Packaged Applications, Enterprise Services a
combination of these components. The Custom
Application Framework enables business to provide a
great user experience. However, this has the following
drawbacks:

• Re-Branding the user experience would potentially

require changes to all the sites.
• Users still need to know the URLs for each of the

sites. By adopting some best practices, this can be
reduced but not eliminated.

• This model results in redundant hardware and
software for each of the point-solutions. This is
because each of the business units would like to
schedule their own maintenance windows and the
only way to facilitate this is to have dedicated
infrastructure for each of the point solutions.

The Target State is to leverage the concept of
Federated Portals to create an enterprise wide Role
Based Portal. The advantages of this approach are as
follows:

• Single point of entry for all employees, customers,

partners, etc.
• Provide Application (Portlets) access based on the

role of the user.
• Enable consolidation of infrastructure (both

hardware and software).
• Always-ON capability provided by the Enterprise

(Role based) Portal.
• Simpler re-branding of sites.
• Multi-Channel delivery provided by the Federated

Portal by leveraging Services.

Service Tier

The Service Tier is the primary enabler of the SOA and
includes the components described in this section. It
enables integration and business process automation
across the enterprise. This tier is based on the SOA
principles of coarse-grained, loosely coupled, and
standards-based services. It provides the ability to be
responsive to changing business needs by providing
global solutions, with reduced application and
infrastructure complexity, increased reuse of business
services and service orchestration capabilities.

Service Bus
The Service Bus is the key component for delivering
the service-oriented infrastructure for IT agility and
alignment with business needs. It should have seamless
integration with service registry and service
management components which in turn accelerates
configuration and deployment management and
simplifies management of shared services across the
enterprise.

The Service Bus should be able to receive any
synchronous or asynchronous message in any protocol
and route it to the destination based on configuration
rules. In addition, it should provide the capability to
transform the message to the format required by the
destination. As this controls the message flow between
the consumer and the producer, the Service Bus is in
the unique situation to manage, monitor and enforce
the service levels.

Figure 9 – Enterprise Service Bus Architecture

The above diagram represents the Enterprise Service
Bus. The Service Bus basically acts as a dynamic
configurable Message and Service broker. Following
are the capabilities that define the Service Bus.
• Message Brokering between heterogeneous

environments.
• Support Asynchronous, Synchronous, Publish

and Subscribe messaging
• Support synchronous and asynchronous

bridging
• Support multiple message formats including

SOAP, SOAP with attachments, XML,
structured non-XML data, raw data, text,
email with attachment. etc.

• Support heterogeneous transports between service
end points.
• Support multiple protocols such as File, FTP,

HTTP(s), multiple JMS providers, RMI, Web
Services, CORBA, DCOM, eMail (POP,
SMTP, IMAP), SIP, etc.

• Support message transformation capability which
is required to enable the consumer to talk to the
producer and is not expected to be leveraged as a
full fledged transformation engine.

• Support configuration-driven routing:
• Message routing based policies or call-outs to

external services to support complex routing.
• Support both point-to-point and one-to-many

routing scenarios to support both request-
response and publish-subscribe models.

• Provide Monitoring capability:
• Service monitoring, logging and auditing with

search capabilities.
• Capture key statistics for message and

transport attributes include message
invocations, errors, performance, volume and
SLA violations.

• Provide High-Availability:
• Support clusters and gather statistics across

the cluster to review SLA violations.
• Simplified service provisioning:

• Deploy new versions of services dynamically
through configuration.

• Migration of configured services and
resources between design, staging and
production.

• Support multiple versions of message
resources that are incrementally deployed with
selective service access via flexible routing.

• Support configurable policy-driven security:
• Support the latest security standards for

authentication, encryption-decryption, and
digital signatures.

• Support SSL for HTTP and JMS transports.

• Support multiple authentication model.
• Policy-Driven SLA enforcement:

• Establish SLAs on a variety of attributes
including throughput times, processing
volumes, success/failure ratios of messages
processes, number of errors, security
violations, schema validation issues, etc.

• Initiate automated alerts or operator-initiated
responses to rule violations via flexible
mechanisms including e-mail notifications,
triggered JMS messages, triggered integration
processes with a JMS message, Web Services
invocations with a JMS message or admin
console alerts.

Following are some best practices for the Service Bus.
• It is good practice to start adopting the Service Bus

whenever the number of services is more than 50.
One definitely needs a service bus when the
number of services exceeds 150.

• Start small by targeting a single composite
applications or divisional business process that
spans multiple systems.

• Multiple LOB could potentially manage their own
service bus based on their policies and a Service
Bus at an Enterprise level could act as a broker for
sharing services across the various business units.

• The functionality described above must be
abstracted from the service itself. Organizations
must make the decision between deploying a
vendor provided Service Bus and internally
developed abstraction layer.

Service Registry
SOA requires services to be coarse-grained, loosely
coupled, and standards-based. As services are
developed and deployed there must be a catalog of
services available for architects, developers,
operations, business, etc.

Figure 10 – Service Registry

The above diagram illustrates the architecture of the
service registry. The Service Producer publishes the
service to the service registry which is leveraged by the
service consumer for runtime binding. The registry also
acts as the system-of-record for the predefined business
policies which could be used at runtime for
enforcement of these policies.

Following are the capabilities that should be provided
by the Service Registry:
• Core services, including replication, UDDI data

store and security.
• Information services, including data validation,

SOA mappings, advanced classification, and
business data access service.

• Lifecycle services, including approval / change
management, change notification, business service
discovery and QoS management.

• Configuration web-based business service console.
• Platform-independent open architecture,

interfacing with leading enablement, management
and security products.

Following are some of the best practices for the Service
Registry:
• Similar to the Service Bus - start small and grow

over time.
• Every LOB may have its own implementation of

the Service Registry and should be replicated to
the enterprise service registry.

• Provide service browsing capabilities for
architects, developers and operations so as to
facilitate re-use and identify service dependencies.

• As this is the system-of-record for all systems,
maintain service contract information along with
the service definition.

• Version all services.

Service Manager
As the SOA implementation matures in an Enterprise,
there is a need for an overall service manager. The
primary function of this service manager is to manage,
monitor and report on all the services enterprise wide.
Following are some of the capabilities that Service
manager needs to provide:
• Manage and ensure that the Service Level is

maintained enterprise wide
• Map and maintain service hierarchy across the

enterprise and provide dependency matrix to
operations.

• Detect and manage exception conditions.
• Review and monitor business transactions, provide

capability to review in-flight transactions.
• Manage service lifecycle and validate before

deployment.

• Provide non-intrusive service discovery across
multiple systems.

• Ability to manage and integrate with multiple
Service Bus and Service Registry infrastructures.

• Integrate with existing Monitoring infrastructure.

Shared Data Service
For this version of the reference architecture we shall
focus only on the Enterprise Information Integration
EII capability. EII refers to software systems that can
take data from a variety of internal and external sources
and in different formats and treat them as a single data
source.

Figure 11 – Enterprise Information Integration (EII)

Following are the capabilities that should be provided
by EII:

• Provide data modeling capability across multiple

sources.
• Develop query (read and write) to extract

information from multiple data sources.
• Support multiple data sources – Database, File,

Application Adapter, LDAP, Web Services, etc.
• Provide data transformation Capability.
• Provide data validation capability.
• Expose data services to client applications – RMI

or Web Services.
• Standards based – SQL, XQuery, XML, Web

Services, JDBC, J2EE, etc.

Note: Even thought the Service Data Object (SDO)
standards have been defined to simplify and unify the
way in which applications handle data, the industry has
not yet clearly defined the standards for EII. Each
vendor has their own extensions that deal with reading,
updating and inserting data to each of the data stores.
We would collectively prefer to see the vendors,
through the standards bodies, agree on one consistent
approach.

Business Process Management

he BPM is used to manage long-running business
 Asynchronous. Light

 views, business
process models, etc.

• chestration and automation
processes,

•
state-full (long-running) and

•
nd-to-end processes graphically and

•

•
nistrators—to interact with running

•
king on

•
ppliers and customers via

SOA rks

OA Frameworks are re-usable web services that can
sumed by a wide variety of

ort the move to an
OA by helping development teams to rapidly design,

develop and deploy well-designed, modular, flexible,

lication designed to be
xtended to build specific services or applications.

nd a vastly superior starting
oint for creating enterprise class services. Frameworks

been
corporated into the frameworks themselves. This

r include:

s to support multiple access
protocols, while at the same time keeping most, if

•

 such abstractions as
Request, Result, UseCaseController,

•

at have a consistent
definition across many applications in the

T
processes, both synchronous and
weight service orchestration is usually performed by
the Service Bus. Following are the function / features
that should be provided by the BPM.

• Visual Process Modeling – modify

• Built on open standards – BPEL a plus.
Business process or
between private processes, public
human tasks, error handling as well as supporting
nested and concurrent processes for advanced
modeling and custom logic as required to enable
rapid customization.
Optimized process performance: Allows flexibility
of configuration for
stateless (short-running) process design patterns as
well as synchronous and asynchronous process
execution.
Status monitoring: Allow the user to monitor
status of e
measure performance vs. service level agreements.
Process instance monitoring: View statistics on
running processes; drill into individual details;
terminate, delete, or suspend problematic process
instances.
Enable end users—task creators, task workers, and
task admi
business processes for handling process
exceptions, approvals, status tracking, etc.
User and Group Management: Centralize the
assigning of roles, users, and groups wor
integration projects.
B2B Protocol Support: Enable rapid, secure online
connection with su
leading standard protocols such as RosettaNet,
ebXML, and EDI, with secure messaging, digital
signatures and encryption, recoverable and
trackable messages, and dynamic configuration
updating.

 Framewo
S
scale and be con
applications form the backbone of the SOA. These re-
usable services must be enterprise-class and designed
well enough to scale under load, and meet demands of
a diverse audience of stakeholders.

SOA frameworks catalyze and supp
S

scalable and supportable web services, web
applications and portlets. As companies start adopting
SOA principles to transform their IT architecture, it
will be very important for the underlying services to be
created in a consistent, repeatable manner with
enterprise qualities in mind

A framework can be defined as a reusable, “semi-
complete” (skeleton) app
e
Frameworks improve and enable consistency in the
delivered software. Frameworks invert the control
between themselves and the application or services that
are created on top of them.

Frameworks typically provide a set of higher level
programming abstractions a
p
also very often specify a layered architecture for
services that incorporates several design patterns and
software engineering best practices. The architecture
specifies the responsibilities of the components in each
of the layers and the collaboration between them.

Services based on the frameworks inherit the good
architecture and best practices that have
in
makes it possible to ensure that a team of average
developers is able to develop well architected services
that take advantage of design patterns and best
practices.

The typical layers that a services creation framework
would offe

• Transformation Layer: Supports protocol and data-

type conversion

not all, of the service implementation protocol and
access mechanism agnostic.

Business Logic Layer: Holds all the business logic
in the system. This includes

BusinessPolicy objects etc.

Business Data Layer: The layer for domain
objects, i.e. the objects th

enterprise. The Business Data Layer should
provide location transparency - that is, the users of
the domain objects should not be concerned about
the exact physical location of the underlying
persistent data on which the domain object itself is
based. This layer should be able to manage

persistence to, and retrieval from a multitude of
persistence repositories in the enterprise.

Integration Layer: A placeholder for a m

• yriad of

connection technology implementations ranging

SOA oth

evelopers and the corporation. For developers, the

rvices, web
applications and portlets.

tes design patterns and

•
ode.

pecifications.

efit from using

For nizations and the company as a whole, the

OA Frameworks offer the following benefits:

riented
Architecture quickly and at a lower cost.

evel of architecture and design rigor.

sily

•
ill levels.

 to another.

IT ing SOA principles to
ggressively create re-usable services that encapsulate

pplication Tier

izations have made the
rgest investment. Even though enterprises will invest

hese are the thick client applications still in existence

They may the old versions of

pplications will typically have some published
PIs or Logical Models for integration purposes.

usiness solution provided by proprietary mainframe
plications are either

his is the traditional approach to enterprise
eware software

iddleware
(MOM) with ability for resources to publish and

•
usiness processes.

cess to

The leverage an integration

ub. However this by itself, without the appropriate

from JDBC, to JNI to Java Connectors. All the
infrastructure code that is needed to access
extended enterprise systems such as ERP systems,
content repositories etc. will fit into this layer.

 Frameworks offer a number of benefits for b
d
frameworks offer the following benefits:

• A solid foundation to create se

• Improved productivity as a result of using a
framework that incorpora
best practices.
Utilize off-the-shelf features of the frameworks
and write less c

• Don't need to understand the nuts and bolts of
J2EE standards and s

• Don't need to be an expert at Object-Oriented
design and design patterns to ben
them.

IT orga
S

• A catalyst for getting to a Services O

• Consistency of design and development across
projects.

• Repeatability and the ability to guarantee a
minimal l

• Improved business agility as a result of having
modular solutions that can be changed ea
(often via configuration changes).
Use of software engineering best practices
amongst developers with varying sk

• More consistent, predictable and better tested
solutions.

• Improved mobility of developers to move from
one project

organizations are us

a
and expose key business processes. By combining a
layered architecture, ease of use and a deep emphasis
on good architecture and re-use, SOA frameworks
enable the creation of enterprise-class mission-critical
services in a vendor neutral, portable manner.

A

This is the Tier where IT organ
la
in SOA moving forward, this tier is not going to go
away anytime soon.

Legacy Applications
T
within an enterprise.
packaged applications that have not yet been upgraded
due to budget / business constraints. Alternately, these
applications are best suited to run in the client / server
mode.

These a
A

Mainframe Applications
B
systems and integrations to these ap
through a messaging or database gateways. There is an
effort underway by the mainframe software vendors to
expose all their APIs as Web Services, which in most
cases is not the right approach. In most cases, the best
approach is to leverage a middleware to develop an
abstraction layer and expose the services at the right
level as required to support the business requirements.

Enterprise Application Integration
T
application integrations. EAI middl
typically provides the following capabilities:

• Messaging: Message Oriented M

subscribe to messages.
Business Process Manager: proprietary BPM
capability to automate b

• Application Adaptors: Pre-built Connectors to
various packaged applications that allow ac
the application views or technology adaptors to
other technologies like databases, messaging (MQ,
JMS), Web Services, etc.

best practice for EAI is to
H
supporting methodology, may result in a point-to-point
solution on the hub. Even though the Services Tier
provides the Service Bus and BPM, which enables
enterprises to move adopt SOA and migrate away from
EAI, this migration is expected to take a long time.
Especially as large IT organizations have invested very
heavily in EAI and replacing this capability will take a
while.

Enterprise Security
Currently most of the applications, whether they are

ackaged or custom applications, implement their own
of the applications provide the

p
security solution. Most
ability to externalize their authentication but rely on an
external implementation which results in redundant
code. In addition, the administrative cost of duplicate
user accounts on multiple applications can be huge.

This could be simplified by breaking the enterprise
security into three major components:

Figure 12 – Enterprise Security Components

Delegated Admin: User and Resource Administration
application that enables administrators (based on their

le) create/modify/delete user privileges. This ro
application updates the same repository leveraged by
the Enterprise Security Server.

Enterprise Security Server: Provide security services
such as User Authentication, User Identity

anagement, Authorization, Auditing, User Profile

le applications
of an enterprise. Mapping of multiple identities to

•

the most common one

However, this also increases the need to add

•

•
• e

• d time-
nd their

tivation of accounts across

Clin

M
Management and User provisioning.

• Identity Management involves managing user

identities within and across multip

a single user or linking a user identity in one
application with a different identity of the same
user in another application allows multiple legacy
user identities to co-exist.
Authentication involves validating the identity of a
user. Several authentication mechanisms may be
used in an enterprise with
being validating against a password. Other
mechanisms may involve digital certificates, smart
cards etc. Enterprise-wide policies can be
instituted to ensure that users present conclusive
proof of identity before being provided access to
resources. From a convenience and usability
perspective, users may need to be able to sign on
once and gain access to multiple resources.

proper controls and policies to ensure that once
authenticated a user doesn’t gain access to
resources that he/she should not have access to.
Authorization involves controlling access of users
to diverse resources across the enterprise.
Auditing involves tracking user activities.
Profile Management involves managing th
profiles of the users.
Provisioning automates the tedious an
consuming process of managing accounts a
life cycle. It allows centralized activation,
modification or deac
multiple applications in an enterprise. In an
enterprise, user provisioning could include explicit
granting or revoking of user access to resources
and establishing of entitlement policies for the
user.

t Applications: The client applications externalize
 leverage the enterprise security services. and

cknowledgements
nowledge the many
 contributed portions

f this document, performed substantial editing of the
ided reviews and feedback.

s
shok Kumar, Manager, SOA Architecture, Car

amb, Enterprise Architect, Wells Fargo
 Fargo

ncipal, Dev Atma Technologies, Inc.
r &

chitecture/Engineering, Bank

rant a non-exclusive licence to the Integration
publish this document in full on the World Wide

eb (prime sites and mirrors) and in printed form. Any other
 without the express permission of the

uthors.

Additional Information

A
The authors would like to ack
organizations and individuals that
o
content, or who prov
Specifically, we would like to acknowledge:

Erik Dahl, SVP Lead Integration Architect, Bank of
America
Robert Eisenberg, Principal, REA Associate
A
Rental Group
Jeffery L
Tom Mitchell, Lead Technical Architect, Wells
– Private Client Services
Burc Oral, Pri
Yogish Pai, Chief Architect, AuqaLogic Compose
Chair – SOA Blueprint working groups
John Schmidt, SVP Ar
of America
Sankar Ram Sundaresan, Chief Architect, e-Business
IT, Hewelett-Packard Company

Copyright

Copyright © 2006.

The authors g
Consortium to
W
usage is prohibited
a

	SOA Reference Architecture – Definition
	SOA Reference Architecture Approach
	SOA Foundation
	Enterprise SOA Maturity Model

	SOA Reference Architecture
	Web Application Tier
	Packaged Applications
	Custom Applications
	Enterprise Infrastructure Services
	Enterprise (Role-Based) Portal

	Service Tier
	Service Bus
	Service Registry
	Service Manager
	Shared Data Service
	Business Process Management
	SOA Frameworks

	Application Tier
	Legacy Applications
	Mainframe Applications
	Enterprise Application Integration

	Enterprise Security
	Additional Information
	Acknowledgements
	Copyright

