[image: image11.jpg]

[image: image1.png]ITKOESLISA™

[image: image2]
For SOA, The Future of Quality is Federated

Establishing Horizontal Trust in Federated SOA Application Environments

April 2007

By John Michelsen and Jason English, iTKO, Inc.
iTKO, Inc.

1505 LBJ Freeway

Suite 250

Dallas, TX 75234

USA

www:
http://www.itko.com
email:
info@itko.com
tel:
877-BUY-ITKO (289-4856)
©2007, iTKO, Inc. All rights reserved.

Version date: 4/22/2007
Contents
Executive Summary

Introduction: The Federated SOA

Challenges

Vertical Trust vs. Horizontal Competition

Federated Systems are Heterogeneous

Policies Are Hard to Follow

Consumption is Not Free

Solutions: SOA Lifecycle Quality

Establishing SOA Governance

The Certification Environment

A Center of Excellence for SOA
Lifecycle Quality and Testing
Conclusion

Everyone Has A Part in this Play
References
About The Authors

About iTKO LISA
Executive Summary

Leading enterprises and public institutions are universally moving toward a more federated approach to systems: highly distributed, reusable and flexible methods for delivering the software required to support operations. SOA (Service-Oriented Architecture) allows a division to build process workflows that consume the best of the component technologies already published or in development by other organizations as Services. A Federated SOA offers the promise of greater agility, and purportedly less integration headaches and effort between different authority domains and divisions, as all of the Services should follow common design patterns.

However, there are good reasons why divisions often built and maintained their own monolithic application silos: who else could they trust? How can you be sure that a third party would deliver the required functionality, if they are not "on the line" to make it work for you? Realizing an effective Federated SOA strategy in mission-critical theatres, whether they are business transaction networks, or military scenarios, requires establishing horizontal trust between peer units, with services managed outside of the vertical chain of command.

SOA Governance is the practice of aligning technology with the operational charter of the organization. Technology pundits, consultants and vendors each have their own particular recommendations for establishing and enforcing good policies for software, atop the distributed authority domains and constantly changing technology components of the SOA application for business. But for Government entities and the teams that develop their own infrastructure today, the governance challenge takes on a new dimension. Those who consume technology services must be accountable along with the publishers who create and offer services.

	Net-Centric or SOA?

	Note that in this paper, we will often use the terms “Net-Centric” and “Service-Oriented” interchangeably to define SOA. Many government institutions use “Net-Centric” to describe a shared and collaborative set of software capabilities that are leveraged in a very SOA way. For our purposes, either term works.

This accountability goes far beyond compliance to technology protocols. Will the delivered application meet the workflow requirements, with complete process accuracy, and at the necessary scale? A Center of Excellence in SOA Policy Certification is required to ensure that all of the players in the Federated SOA are responsible publishers and consumers of shared technology assets. The certification process must happen at design, build and runtime of the SOA application.

There are three types of SOA Policy that each organization must take responsibility for: structural, behavioral, and performance. The more specifically defined and enforced these policies are throughout the SOA Governance Lifecycle, the more effective the combined results of the Federated SOA will be. The end result? All the agility, efficiency and reuse the participating organizations expected from SOA, with a level of quality that fosters the trust needed to make structural, behavioral and performance policies a reality.
This paper will refer to government organizations as a case study on SOA Governance. However, architects and developers in the business computing arena can draw valuable lessons from the complex integration and quality challenges faced by federal agencies.
Introduction: The Federated SOA

Technology innovation around SOA is happening on a rapid scale within both defense and civilian government agencies. This change is being driven by economic and operational concerns that the business world at large may not fully comprehend. Indeed, a typical enterprise CIO may comment on the operational and budgetary “bloat” of federal organizations, but reality demonstrates that there is fierce competition for investment dollars within the public sector. Programs must reach milestones of success, despite resource and time constraints and within a potentially even more dynamic environment than the typical commercial enterprise.

By pushing for longer term goals, the public sector provides value to taxpayers by helping create a “purpose-driven market” for technology investments – opportunities for innovation that the stockholder-driven company can never realize. After all, where did we get the Internet (DARPA) itself? Or the quality and implementation best practices of CMMi or ITIL?
Government agencies are now seeking an environment to better leverage technology assets across organizations as services. Currently, these distributed assets are owned and managed by separate entities. However, the common goals of many organizations will create a purpose-driven market: a “Notional” architecture where services can be published and consumed through a central authority, while retaining the flexibility to meet operational and business needs.

	Government as a Model SOA Example

	“I think that the government can benefit most from SOA considering the nature of their business and the underlying need to have many systems interoperate. However, there needs to be a realistic understanding of the issues at hand, and perhaps they need some new approaches other than building architectures that look like archeological layers of past IT contracts. I do think some of the more spectacular SOA successes will come from the government side.”

-- Dave Linthicum, Linthicum Group1

We can think of this system just like we think of the idea of multiple state governments operating within a Federal government. Each state has its own laws, objectives and budgets, but all of the states in the system are also governed through a Federal authority. This model can also be applied to SOA application architectures, to define a Federated SOA.

The Federated SOA will provide a leading indicator for where net-centric software innovation is headed for the business world. Specifically in times of war or domestic crisis, we have seen unparalleled advances in technology to try to find a strategic advantage. These communication systems and methodologies weren’t just created to make money or optimize cost. They were born from the idea that we have a specific, targeted outcome to reach. Let’s take a step forward to prove why governmental approaches are going to produce leading-edge techniques for SOA Governance.

Challenges

Federal agencies, just like any other global enterprise, are now at a crossroads for establishing an SOA strategy, in a world where no single strategy can possibly cover every need. Countless siloed technologies currently exist as acronyms within each operational unit. Supporting and maintaining so many separate platforms becomes untenable over time, as any additional functionality or code adds onto the existing technologies in a “stovepipe” fashion. Each new customization and every line of code written for one of these stovepipe technologies results in a long-term annuity that will have to be paid year after year in the form of fragile and complex maintenance labor and infrastructure support over time.

Organizational: Vertical Trust vs. Horizontal Competition

For Net-Centric computing environments, vertical trust (i.e. trust up and down a common chain of command) is far easier to achieve than horizontal trust (i.e. across authority domains or organizational units).

In business, and in governmental organizations, vertical trust up and down the chain of command is relatively easy to come by and already exists. The line of reporting structure typically creates the sense of reuse standardization and the ability to leverage vertically within an organization.

Vertical Trust

[image: image3.png]"N EEEE N EEEEENEEEEEENEEEEEEN,
[

[Division ’ [Division

‘ Division

Group | Group [Group | Group

Teams

As shown above, in vertical hierarchies within organizations, there is an expected level of shared trust.

· The higher levels within can expect the underlying teams to “build to order” technology assets and maintain them according to defined policies.

· Supporting providers can expect the requestor to leverage the developed capabilities or services according to well-understood and defined requirements.

Horizontal Trust
At the highest levels, horizontally across peer groups, trust is usually not the case. Ironically, a lot of organizations that share common goals tend to foster distrust and create a competitive spirit between those horizontal peer groups. That is the source of why horizontal governance is such a critical aspect to SOA adoption.

[image: image4.png]U EEEEEEEEEEEEEEEEEEEEEEEEE,

Across different operational or business units, coordinating the proper use of a service can be difficult.

· Materiel or Service Providers want to establish reuse of their services, but they are answerable to different stakeholders.

· Upstream Consumers of services do not provide clear enough Use Cases or policies of how they will leverage the services.

· Therefore teams often build and maintain redundant functionality in vertical silos.

There is often some competitive effort between peer groups, creating inefficiencies when software functionality gets duplicated. Therefore, before we can realize the value of reusable Services offered within a Federated software strategy, agencies must learn to establish trust horizontally, across organizational and chain-of-command boundaries.
Federated Technologies are Heterogeneous

The operational rules and behaviors of an SOA live in the middle tier, iterating within any number of “alphabet soup” technologies, which are exposed as Services. These services may be managed or published within your own authority domain, or reside outside the department, or even outside the organization.
Note that “Services” need not be Web Services…

Many technology vendors simply equate Web Services (WSDL/SOAP) with SOA, and so from a testing point of view they equate the testing of Web Services with the testing of SOA.

While it is true that a number of initiatives for doing SOA are very web services centric, Aberdeen’s last research on this2 points out that only about 50% of the SOA initiatives at best-in-class companies are web services based. There are a variety of technologies being used to create that commoditized middleware for SOA. While Web Services can be a good integration strategy, other technologies are very valid, and possibly better for a given organization than a web services stack, for instance using an ESB with little reliance on Web Services.

The distinction is important to make if you are trying to ensure quality from SOA testing, because it means testing a single technology will never ensure trust. Teams need to test the implementation and side-effects that occur across heterogeneous technologies, as opposed to just a selected middleware layer.
[image: image5.png]o
Requiﬂon\ing ,&'T’? Part,ner_olr_gﬂzation
\ j \
/4 L@ “X Main 7 & 6 B o ~ l 6
P Legacy Data\ Ledacy App \ % ‘

\ / : Nk o \ wr [/
\SOAP objects ‘—/_’ ‘ E . Service
— TR Databa: > -—
Messaging e,
K ©
»\ 2 . Your App t‘ web mtenaoel
/ © - Workﬂow
- L
6 Bl tools -
0
perational
R lles

y Your Organlzatlon

Service Cﬂwiner
“~ N
b‘f’ o Division2 ‘ é\ ‘

Data File System =4 “X
e ,\ zofo \ g

\Webswces l -~ = \Rmufsl \WebApp _
-—

>
"o
ESB

Outsourc d firm

)

As illustrated above, in a distributed, heterogeneous application environment, new issues and errors arise when you make multiple components talk to each other to support a requirement. In an SOA, more unique technology types, multiplied by more points of connection, equals an exponential increase in possible failure points.
Heterogeneous technologies will never go away and leave behind a totally homogenous platform. There are several reasons for this.

1. Legacy systems can’t just be “turned off”. Technologists are always attempting to provide a more flexible application architecture at a lower cost to their constituents. As technologies evolve, we almost never have a cost justification to retire existing systems and replace them with the new technology. The time will come soon that the Web Services stack we now consider modern technology will be out of date, yet we will need an integration strategy to leverage these soon-old applications with tomorrow’s better thinking.

2. Resistance to vendor monopolization. A “we do it all” vendor can promise uniform specifications and the benefits of increased scale; but for larger clients, tying the entire technology to the platform of a single vendor may inhibit specialization and become perceived as a long-term risk if development priorities (or pricing structures) change. Thus, even new applications are built on a variety of technology platforms.

3. Distributed authority domains. Federated organizations have multiple chains of command. Operational units have unique functional needs from technology assets, therefore, they naturally desire to keep some teams and service assets under direct control.

So can SOA offer a “rosetta stone” that can sit atop the federated SOA and alleviate the increased effort and risk of maintaining so many heterogeneous technologies? It would be nice if we could afford to stay in the semantic layer and define a set of behaviors that all services could fall in line with -- but compliance between services gives us very little visibility into whether the implementation layer (where the operation’s logic actually resides) is worthy of trust. All the pinouts may seem to connect syntactically, but the end result in the real world is an emperor with no clothes, i.e., this stuff just doesn’t work for its intended purpose.

To trust SOA, we will need to collaborate at a much deeper level and think of development and testing as a continuous process and not an event. The services, and especially the implementations, must be submitted and certifiable (functionally, and at load) to the community relying on the SOA.

Policies are Hard to Follow

Organizations that are focused on Policy have a big, big job ahead of them. In the next couple years, Registry/Repository, Runtime, and the Testing area of SOA Governance will make Policy focus less on structural compliance, and more around operational policy definition and enforcement.

A simple example -- today’s Policy typically sounds like: “Interoperability checks,” “WS-Security verification,” or “Hit testing XPath queries on XML documents.” Pretty granular stuff -- and not a very rich policy grammar.

We need to realize that the organization won’t want to write policy concerned with XML syntax and what standards you’re using. Of course they will still want standards to get the reuse and interoperability, but the business version of policy will be:

· “I really need to ensure functional integrity of this particular service within the context of my business process”

· “I really need the response on resource availability requests to be accurate within 30 seconds of my request.”

· “I can’t allow stale data to be reported as current activity in the field.”

When the organization talks about policy, they are not going to read standards definitions from OASIS. They are going to talk about what their operational or business functions are, and what kind of expectations they want to put on the systems that are implementing those policies. That is real Policy – that is a Very Big Thing.

So, short and sweet, if you are talking to a vendor, or a peer, who has got a so-called “Complete SOA Governance Policy Management System” -- their definition of Policy is still far too small.

What is really missing is a Policy focus on the functional integrity of the application - the quality and reliability of the end customer experience, accuracy of data, and runtime performance of the application.
Service Consumption is Not Free

There is a commonly held (and somewhat sentimental) notion that once the SOA architecture is in place, it will provide an environment of published Services that multiple Consumers can basically leverage within their own workflows at little or no cost.

This model indeed does work for very non-differentiated or commoditized Services such as stock tickers, news feeds, simple “calculators” for measurement unit conversions, and the like. But value-added functionality offered to other parties through Services requires a little more sustenance.

Take for instance a service developed for your own teams’ internal use. The certification level, and the level of structural, behavioral, and performance policy will not be nearly as high. The maintenance cost for that service will be much lower, and there will be much less risk and testing rigor in changing that service when a finite set of consumers are impacted by that change.

Now consider if your team published a mission critical, broadly reused service that will have a widely distributed use among many parties that your team may not even be aware of. That creates an increased cost of producing a service that is robust over time and reusable. If consumption creates costs and effort for the producer, then the consumption itself should not be free. There must be a reckoning of some sort when a consuming project team gets benefit from an existing reusable service that is properly maintained.

That reckoning has to occur – or we are penalizing the production of robust, quality services. The increased burden without an associated increase in the budget for that service to be reused will actually threaten that service’s long term quality and adherence to the policy the Consumer expected.

So in the end, consumption of existing services does have a net decreasing effect on the cost and time of producing a solution – but we can’t ignore the fact that it doesn’t come without cost and effort. Even if it is much less than building from scratch, it isn’t free.

Solutions: SOA Lifecycle Quality with iTKO LISA

iTKO LISA is a complete no-code SOA software testing solution that supports the entire team's development lifecycle for websites, web services, ESB messaging layers (JMS/MQ), enterprise Java, .NET, databases, and more. LISA will carry developers, QA teams and business analysts from unit testing, to regressions, functional testing, end-to-end integration, load testing, and monitoring after deployment. LISA will be used as the reference Lifecycle Quality testing solution for the remainder of this document.

Establishing SOA Governance Requires Trust

The primary goal of SOA Governance in Net-Centric computing environments is to establish a level of Trust in our federated systems, as they evolve. If the level of trust is high, the organization can rely on both the historical and runtime validation of every service it depends upon. Without SOA Governance, SOA remains a chaotic, free-form exercise.

If the extended organization plans to overcome the “vertical silos” and rely on distributed services each being developed and maintained on their own lifecycle, what are the rules of the road?
[image: image8.png]ITKOESLISA™

According to Gartner analyst Frank Kenney3, SOA Governance is made up of 3 components: the Registry (or Repository) where the assets of SOA are stored and catalogued, Policy which is meant to keep track of the “rules of engagement” and service levels expected in SOA, and an element that can get overlooked in an idealized world: SOA Testing, which is needed to ensure SOA Lifecycle Quality.

What good is a registry if it contains assets that are not sufficiently tested at both the Service, and the implementation layer? What good is a policy if it is not properly enforced at runtime? Strong testing is required to ensure that the SOA application continually meets the business needs – in development, integration and deployment. The longer you fail to ensure Lifecycle Quality as an aspect of SOA Governance, the wider the deviation becomes between what you expected, and what you are delivering. The more interconnectedness, and the more new services you introduce, the more costs or uncertainty you are introducing without the discipline of continuous testing.

Defining a Very Big Policy

As we continue to mature the SOA Governance space, the Policy area appears to be the one that is the most immature. In the very near future, Governance will become synonymous with Policy, and in so doing it will take all four aspects of governance to make policy work. Each is vitally important to achieving reliability and trust in federated software architectures:

	Policy Type
	Definition
	Examples of Use

	Structural
	The services components are compliant with chosen integration standards, and reusable with the current development, deployment and governance platforms.
	- Do the “pin outs” line up so that the components can technically communicate with each other?

- Are the services following correct authentication protocols?

- Is the XML syntax compliant?

	Behavioral
	The service interacts and provides correct results within the context of the workflow, or task that needs to be accomplished.
	- Are the results I expected actually being produced?

- Does the operational or business logic of this service properly support the process it is being used for?

	Performance
	Is the service able to sustain the performance, scalability and reliability levels required over time?
	- Can this Component produce the results I need with the number of users I need, within the time constraints, and infrastructure that I need it?

	Runtime
	Expectations around the service level of the component in the live production environment.
	- Our SLA for this service is 1 second for our top 20 customers and 3 seconds for all others

- Uptime must be > 99.999%

To date most of the Policy we've put in place has been around Structural interoperability. But eventually as standards evolve, and different organizations learn to play nice together, they should become a part of the infrastructure. As the standards for interoperability sort out, we will be able to automate much of the validation and testing of these root-level types of policy.
After all, what good is a Policy if you can’t prove it via testing at design time, run time, and change time? If you aren’t Certifying the SOA with robust tests, you are just certifiable.
The Certification Environment: Two Sides of the Coin
There are two critical certification flows to a robust, federated test and policy validation strategy: a Publish Cycle and a Consume Cycle. The need for a Publish Cycle is evident; a standards body must establish and enforce criteria that provide for an environment of trust to encourage and enable reuse. The Consume cycle is equally important, as it must properly lay out the requirements of the contributing Services in a realistic and enforceable way. iTKO’s LISA SOA Testing Framework provides a platform for this level of continuous certification, for both Publishers and Consumers of SOA applications.
The Publish Cycle

There is a publishing process that will take the form of an Offer, and there is a cross-domain group that will verify that the introduced service meets the policies before making it available to the services. But on top of the delivery of compliant services, we need to continuously monitor and test those services, as they may change or fall out of expected policy guidelines.
[image: image6.png]SOA Publish cycle

S 3. Verify
— Metrics & v Structural
4 2 Alerts monitoring Check in Behavioral
4. Rewew v @ Policy tests P:rfaovrlr?‘;ancg
— @ (PSR
& : 1
3 Continuous
5 Testing
)
\ / Service
Repair Repositories - (a
issues 5] —
—
2. Certi
ertify 7 -
o O >
@) S Component
1. Offer O% Testing

Candidate
services

Figure 1. Publish Cycle for service producers to submit and certify that services meet the needs of the SOA community with continuous LISA testing.

How the Publish Cycle works:

1. Offer: A developer or development team creates a new, uncertified version of a Service Component (SC). They can offer the working SC along with documentation, and optionally they can offer up working LISA Test Cases as part of the process to aid certification and store those assets in the registry.

1a. Developers self assess quality at a service level by creating and running LISA tests against the SC (whether it is a technology component or web service).
1b. Developer offers SC to registry (not yet certified at the expected level, but the development team can accelerate the process greatly by submitting functional, performance, and other Tests to validate the policy “out of the box.”)

2. Certify: Certifiers use the same LISA tests, and iterate on those tests to validate that the SC meets all required policies at every iteration of the service’s lifecycle. LISA Tests are checked into the test registry/repository alongside the SC at each level of certification (for instance from Trial level of certification to Fully certified).

3. Verify: Certifiers then register the valid test cases to the LISA Continuous Testing platform that ensures required Quality of Service levels, even as the SCs and overall application environment evolve. Continuous testing should provide constant validation of each SC to ensure they meet service levels at build and at deployment time based on any scheduled interval or event.

4. Review. All metrics and test information output through the LISA testing dashboard is published to both Certification and Publishing teams for reporting and alerting on SC issues. LISA’s alerting mechanisms can inform any development or deployment team of exceptions or errors that occur within the Certification Environment.

The Consume Cycle
The Consume Cycle is equally important; those who will leverage a service must establish a baseline for their expected behaviors so that ongoing change does not cause the system to fail at change time.
[image: image7.png]SOA Consume cycle e
/ 3. Validate

2. Confirm @f@fﬁ:} -t L Workflow
Workflow & _Checkin Behavioral
” & Poicies tt Performance
) 10 Tests
=
QOO @\ Continuous
— 3) Testing J “\ ‘;

Service
Repositories

S ﬂ
®.® @ 4. Alerting

Discover &
Assemble Certified 4 k)‘ Return Workflows
& Candidate y “* & Policy Violations

1. Discovery Services

xil

oo

Figure 2. Consume cycle for LISA testing and certification processes in an SOA environment.

How the Consume Cycle works:

Developers in different divisions create pilot Workflows that consume one or more SCs as services that feed the targeted process. The Workflows may consume (or plan to consume) SCs at any level of certification.

1. Discovery. Development “consumers” browse available SCs and their associated published Policies and LISA test cases in order to determine applicability to their proposed Workflows. Dev teams can test them using existing tests or combined with a target workflow test (i.e. testing the validity of the workflow in absence of the underlying services).

2. Confirm Workflow and Set Policy. Certifiers verify operation of Workflow by creating multi-tier LISA tests that span each operation, and publish the expected behaviors to the registry as Policy that can be certified via suites of LISA test cases.

3. Workflow Validation. Test suites for workflows are checked in to the LISA Continuous Testing platform as Policies for continuous monitoring of required Quality of Service – Performance, Scalability, and Reliability. These tests “set the bar” for candidate and certified Services that are accountable to support the workflow.
4. Alerts and Exceptions. A LISA test dashboard provides key metrics to Development, Certification and Admin teams. Workflows are monitored for issues as SC development lifecycles and demands on deployment evolve. If an exception, error or boundary condition event occurs that violates one or more Workflows, LISA can alert stakeholders, with root cause test cases provided.

In our practice we have found that most organizations haven’t even considered managing policies or tests for how they Consume services. The reality is, it’s not FREE BEER in SOA. If there are no expectations placed upon the consumer of services, you will have total chaos and no Governance in your SOA. You need to define the expected behaviors of the consumer, so the Service providers in the network can provision and test that all the critical workflows it supports are valid now, and in the future when a new release of the service component is proposed.
A CoE for SOA Lifecycle Quality

If you built a CoE (Center of Excellence), every time an analyst told you to, there’d be more CoE’s than there were desks in the IT Dept. But of all the areas where a CoE might be most critical, an enterprise-wide SOA initiative would be one of them.

Go Horizontal for SOA Excellence

We’ve discussed how Horizontal Governance presents a challenge to successful SOA adoption.

One way to combat that trust concern across organizations, and instill a sense of trust, is through a center of excellence around SOA. To instill trust horizontally and make SOA adoption possible, we need to use an analogy from a States’ rights vs. Federal rights debate. The individual divisions need to consider themselves autonomous on certain levels, and owing certain rights at the Federal level; but they also have the opportunity to participate in how policies are set at that Federal level, so that it isn’t just a “Down from Above” edict that will immediately create a defensive reaction, instead of an unified purpose.

	A Net-Centric View of Excellence

	“I tend to reduce Net-Centricity to two questions that are both addressed by community. ‘Have you asked your community for help?’ and ‘Are you helping your community?’ If you get positive answers to both those questions, you've got 80-90% of what Net-Centricity promises just through behavioral changes.”

-- Booz Allen Hamilton VP Art Fritzson4

This organization will even (at the end of the day) help model what policies need to be so-called Federal Policies and which can safely be handled at the State level. For example, we talk about policy that can be automated along the three domains: structural, behavioral, and performance. It might be quite accurate to say that at the Federal level, structural policy (or compliance) might be the most important aspect, while from a State-to-State kind of policy, behavioral and performance policies will perhaps be most important to define at those levels.

Take that one step further: SOA Governance is about the Publisher of the service, and the Consumer of the service. Whether it’s within the same division or across divisions, the behavior and performance policies need to be authored, automated and enforced. However, services created within the backdrop of a set of sound structural policies, and some infrastructure or basic performance and behavioral policies must create a predictable ability for people to work together.

Without this kind of CoE, we are in a very difficult position for trying to create that horizontal trust. We must create a better way to provide SOA visibility across the organization, which historically is not very easy to do. LISA provides a framework for achieving the test collaboration levels required, however, like SOA, a CoE is something your organization does, not something you buy.
Lifecycle Quality and Testing

Software testing in the standard “waterfall” development cycle has long been relegated to a project milestone somewhere after development and integration happens. But in SOA, Lifecycle Quality is a continuous part of SOA Governance, and not an event that unit tests a specific technology as a pre-release feelgood.

	ZapThink’s Ron Schmelzer on SOA Quality

	“Exposing a Service is one step in the lifecycle of SOA development, but it is not even the first step. Indeed, the step companies take to expose and execute Services should be one of the last they take as part of a mature architectural process. Quality, in particular, should be considered before any Services are created. If a company has not considered how Services will be tested, how consumers will reliably succeed or fail in their Service consumption, and how they will iterate through Service versions, then any consumers that bind to those initial Services will be doing so at their own peril.”

- “Quantity is no Measure of Maturity,” ZapFlash, April 5, 20075

True, upon publishing a service, you do need to test the Web Services (if that is a part of your SOA approach) to be compliant to WS-I, etc. And of course, you need to be able to test the Messaging layers for compliance with the platform as transactions move through the architecture. But these kinds of tests don't tell you if the business requirement is being missed. Or if the upstream and downstream dependencies are creating problems.

You also need to test the database, and the front-end HTTP. And the EJB itself. And both the legacy CORBA objects and the new POJOs sitting at the implementation layer. If SOA is making that round trip, your testing should make the round trip as well.

And testing should support the entire extended set of players collaborating on SOA, from the process owners writing the requirements, to the developers implementing them in SOA, and the QA teams verifying the functionality and performance.

And SOA testing should be continuous, not just in development and integration, but in deployment, because an SOA by nature is never a static application. Each element of the SOA is on its own development and release lifecycle.
The continuously changing nature of SOA is a good thing, that’s what makes it such a flexible, reusable, and powerful approach. However, these same benefits create significant challenges. When the feature set and underlying components evolve, Trust becomes a moving target. This is precisely why the Continuous Testing features of LISA are so applicable to the broader picture of SOA Governance.

Remember the old School House Rock educational commercials? [“I'm just a bill, yes I'm only a bill, and I'm sittin' here on Capitol Hill..."] Well, the humble Test is just like that bill waiting to become a law (or an SOA Policy). In order to get there, it is going to need the support and nurturing of the SOA community at a team level, and across organizations.

In other words, we promote the humble test as an actionable aspect of the vaunted concept of SOA Governance. To be part of Governance, the SOA test must contribute more than a specific technology checkpoint at a specific point in time. A test must span the SOA application, continuously, and in so doing, it becomes a verifiable SOA Policy.

Conclusion

Though this article covers how SOA Testing with LISA can provide a framework for better quality in federated computing environments, SOA will always be a thing you DO, not a thing you BUY.

If history is an indicator of future innovation cycles, the unique challenges of establishing Net-Centric government practices will contribute new techniques that can make SOA Governance happen for the business IT community at large. The question is, when? This paper has outlined several key strategies for leading the way to a true Net-centric approach to SOA Lifecycle Quality and testing, which is one of the three primary components of SOA Governance.

A continuous certification process must be established as a shared way for all Publishers and Consumers in the SOA to constantly validate that expected structural, behavioral, and performance policies are being met by this software approach. The richness of the Policies that get modeled, and the consistency of your validation, is the direct indication of the level of Trust that consumers will have in SOA.

No SOA solution works without YOU. In fact, the quality of your policy, and the relevance of your certification efforts, depends entirely upon the skill and discipline level of all participants in the SOA strategy. The architect, the developer, the tester, and the requirements owner must work to establish Trust, whether that is from a development perspective or a quality perspective.

The entire extended organization needs to adopt an SOA Center of Excellence – the “Federal” authority that helps the underlying “States” align around common goals. If we think about what the SOA CoE must look like then, certainly there needs to be a set of participants that are not beholden to any particular one of the divisions involved, but there also needs to be significant membership from all of those who will be involved so that we get the participation. After all, this isn’t US vs. THEM – SOA is ALL of us in the same boat together.

You’re going to have to sign off on the much bigger problem of Policy at the operational or business level, which is what SOA should be all about. When the definition of policy is Net-Centric it’s going to require very rigorous SOA Testing -- on a continuous basis of the functional integrity of the system as it is running. Of course, things like IT guidelines are good policy, and performance expectations are good policy. Avoiding downtime, and ensuring monitoring and notification? Very good policy. But if SOA Policy isn’t also heavily involved in the way the organization wants to set up expected behaviors, it’s not big enough.
References

1. David Linthicum, “Real World SOA” column, September 27, 2006, at http://weblog.infoworld.com/realworldsoa/archives/2006/09/us_governmentso.html
2. Aberdeen Group research, December 2006: “The Composite Applications Benchmark,” Peter Kastner, December 2006.
3. L. Frank Kenney, Gartner, Inc. “SOA Governance: It’s More than Just Technology,” November 2006.

4. Booz Allen Hamilton VP Art Fritzson, excerpt from speech titled "Net-Centricity Survival Guide — Utilizing Communities of Interest to Exploit Information Overload" at the January 26-27, 2005, Network Centric Warfare conference held in Washington, DC.
5. Ron Schmelzer, ZapThink, “Quantity is no Measure of Maturity,” ZapFlash report, April 5, 2007

About the Authors
John Michelsen, Founder & Chief Architect, iTKO, Inc.

John has over fifteen years of experience as a technical leader at all organization levels, designing, developing, and managing large-scale, object-oriented solutions in traditional and network architectures. He is the chief architect of iTKO's LISA automated testing product and a leading industry advocate for software quality.

Before forming iTKO, Michelsen was Director of Development at Trilogy Inc., and VP of Development at AGENCY.COM. He has been titled Chief Technical Architect at companies like Raima, Sabre, and Xerox while performing as a consultant. Through work with clients like Cendant Financial, Microsoft, American Airlines, Union Pacific and Nielsen Market Research, John has deployed solutions using technologies from the mainframe to the handheld device.
Jason English, VP Corporate Marketing, iTKO, Inc.
In a market crowded with "silver bullet" solution claims, Jason ensures that iTKO's message and solutions are tightly focused to reach the customers who need them most -- enterprises who want to offer their constituents value by ensuring flawless development execution and quality.

Jason joined iTKO in January 2004, and he brings more than 15 years of experience in executing marketing plans, re-engineering business processes and meeting customer requirements for technology and consumer companies such as HP, IBM, EDS, Delphi, TaylorMade, Sun, Realm, Adaptec, Motorola and Sprint. Jason served as Executive Producer of i2's elite in2action interactive consulting business unit. As Director of eMarketing and Media Architect at i2 Technologies, he was responsible for i2's outbound messaging during a period of extreme growth, as well as marketing services and working directly with clients to build easy-to-learn front ends to B2B collaboration systems. Prior to that, he served as one of the first "Information Architects," managing customer experience for Fortune 500 clients at Agency.com. He has also scored and designed several internationally released computer games in addition to conventional print advertising and television commercials.

About iTKO LISA

[image: image9.png]SOA
Governance

Registry/

t Policy
Repository

Testing

iTKO LISA software is the most complete solution for ensuring Lifecycle Quality governance processes in Service-Oriented Architectures (SOA). iTKO’s mission is to allow everyone involved in IT to own Complete, Collaborative, and Continuous™ software quality, from development, to QA and business analysts. iTKO LISA SOA Testing Framework performs unit, functional, regression, load and performance tests, without requiring test coding or script maintenance, saving up to 80% of testing costs. LISA gives everyone the “Freedom-to-Test” websites, web services, J2EE, .NET, ESB/messaging, databases, and many more technologies exactly as they are deployed. iTKO customers include Sun, Citigroup, Cardinal Health, AMD, TIBCO and i2.

For more information on iTKO LISA solutions, visit http://www.itko.com, or contact iTKO at info@itko.com or call 1-877-BUY-ITKO (289-4856).
[image: image10.png]- ~
ITKOSBLISA"

[image: image8.png] © 2007, iTKO, Inc. | For SOA, The Future of Quality is Federated | page 1 of 16

