

DDS and SOA Interfaces to ESB

NCOIC Plenary, VA Beach 29 Mar 2007

Joe Schlesselman NCOIC OS&P WG Chair joe.schlesselman@rti.com Gerardo Pardo-Castellote CTO & Co-Author DDS Specification gerardo.pardo@rti.com

www.rti.com

Objective is to answer these questions

- What is DDS?
- What makes DDS different?
- Why does DDS fit with SOA?

Middleware Information Models

Leads to stove-pipe systems

DDS

Publish/Subscribe Messaging

Magazines, Newspaper, TV Excels at *many-to-many communication* Excels at distributing *time-critical information*

Single point failure, performance bottlenecks

Replicated Data Libraries, Distributed databases Excels at data-mining and analysis

The DDS Standard

- Data Distribution Service for Real-Time Systems
 - Adopted in June 2003, revised June 2005
 - Specification of API for Data-Centric Publish-Subscribe in realtime distributed systems.
 - Adopted Interoperability Protocol in Jun 06
- Multiple Implementations
 - 3 commercial, 3 open source
 - Several more in-house
- Vibrant open community
 - DDS SIG at OMG
 - OMG DDS tutorials, DDS Focus days, Real-Time Embedded Systems Workshop
- Broad adoption

DDS Communications model

Provides a "Global Data Space" that is accessible to all interested applications.

- Data objects addressed by **Domain**, **Topic** and **Key**
- Subscriptions are decoupled from Publications
- Contracts established by means of QoS
- Automatic discovery and configuration

DDS communications model

- Publisher declares information it has and specifies the Topic
 - and the offered QoS contract
 - and an associated listener to be alerted of any significant status changes
- Subscriber declares information it wants and specifies the Topic
 - and the requested QoS contract
 - and an associated listener to be alerted of any significant status changes
- DDS automatically discovers publishers and subscribers
 - DDS ensures QoS matching and alerts of inconsistencies

Quality of Service (QoS) for Real-Time

	QoS Policy	QoS Policy	
	DURABILITY	USER DATA	Use
2	HISTORY	TOPIC DATA	r QoS
	READER DATA LIFECYCLE	GROUP DATA	
1	WRITER DATA LIFECYCLE	PARTITION	Pres
>	LIFESPAN	PRESENTATION	entati
	ENTITY FACTORY	DESTINATION ORDER	on F
202	RESOURCE LIMITS	OWNERSHIP	Redur
	RELIABILITY	OWNERSHIP STRENGTH	Idanc
2	TIME BASED FILTER	LIVELINESS	تة 1_
	DEADLINE	LATENCY BUDGET	ransp
	CONTENT FILTERS	TRANSPORT PRIORITY	ort

Volatility

nfrastructure

Deliverv

Objective is to answer these questions

- What is DDS?
- What makes DDS different?
 - Data centricity
 - Performance
 - Configurability and QoS
- Why does DDS fit with SOA?

What makes DDS different from other messaging e.g. JMS, MQSeries

- Data-centricity
 - High level of data abstraction: Domain, Topic, Key
 - Proven scalable model for RT systems
 - "Smart" services such as:
 - Ownership, Time-Based Filters, Content-Based Filters
 - Persistence, Keep-Last History
 - Directly supports state propagation/caching
- High Performance
 - Real-time messaging
 - As fast as the "network transport" can handle
 - Scalability
- Configurability by QoS
 - Wide range of applicability: Enterprise to real-time
 - Publish-Subscribe infrastructure:
 - Fault-tolerance
 - Subsumes message-oriented and data-centric

Data-Distribution and Real-Time

Adapted from NSWC-DD OA Documentation

Low DDS Latency

Adapted from Vanderbilt presentation at July 2006 OMG Workshop on RT Systems

Low DDS Jitter

Source: Vanderbilt presentation at July 2006 OMG Workshop on RT Systems

DDS Throughput 25 times better than JMS

Platform: Linux 2.6 on AMD Athlon, Dual core, 2.2 GHz

Agenda

Objective is to answer these questions

- What is DDS?
- What makes DDS different?
- Why does DDS fit with SOA?

SOA

Service Orientation:

" an architectural style promoting a loosely-coupled component-based approach where each component offers one or more 'services'. These services encapsulate some business logic behind well-defined service interfaces. Services communicate using standard protocols and can be accessed without knowledge of their implementation or platform."

Many technologies can be used to implement SOA systems: WebServices, JMS, DDS, CORBA, MQSeries

In practice for enterprise applications the most used technologies are:

For request-reply interactions WSDL to define Interfaces XML to define data SOAP as the protocol

For pub-sub and messaging JMS for pub-sub messaging Emerging: WS-Eventing, WS-Notification (XML based)

DDS is a better fit for messaging in Real-Time and near real-time systems

These technologies are typically included inside an ESB

DDS and SOAP comparison

WS/SOAP/CORBA

- Distributed service
 - Client/server
 - Remote method calls
 - Reliable transport
- Best for
 - Configuration
 - File transfer
 - Synchronous transactions
 - Sporadic request-reply

DDS (JMS, WS-Events)

- Distributed *data* & *events*
 - Publish/subscribe
 - One-way messages
 - Configurable QoS
- Best for
 - Hi-performance 1 to many
 - Dynamic, unreliable transports
 - Flexible delivery requirements
 - Events, High performance messaging

DDS and SOAP address complementary needs

Distributed systems need both!

Information-Oriented SOA for Pub-Sub

NOT THIS: (connection-oriented)

Use of an Information –Oriented design for Pub-Sub applications avoids creating stovepipe systems

DDS as a Web-Service

- Exposing DDS as a Web-Service (WS-DDS)
 - WS-DDS provides pub-sub data-distribution
 - This is another (WSDL) API to access DDS
- Advantage:
 - WS-DDS would be accessible from any tool that can invoke a web-service
- Disadvantage:
 - WSDL and XML marshaling degrade performance

Enabling Real-Time of SOA

Open, Standard Platform Enabling Integration

- from the Enterprise Service Bus (ESB)
- to the Real-Time Service Bus (RTSB)

Thank you

Joe Schlesselman Joe.schlesselman@rti.com

Gerardo Pardo-Castellote gerardo.pardo@rti.com

www.rti.com

