
Advanced Systems
& Concepts (ASC)

Operationalizing the Semantic Web:
A Prototype Effort using XML and Semantic 

Web Technologies for Counter-Terrorism

M. Personick*, B. Bebee*, B. Thompson 
SAIC/Advanced Systems & Concepts

(bebeeb@saic.com)

B. Parsia
The University of Maryland, College Park

Maryland Information and Network Dynamics Lab 
Semantic Web Agents Project

C. Soechtig
Object Sciences Corporation

*Presenter

September 9, 2004



9/7/2004 Page 2

Advanced Systems & Concepts (ASC)

Our challenge is your challenge…

• A key challenge in Counter-Terrorism efforts is 
discerning and revealing group structure from 
diverse information resources with varying quality
– Understanding Groups and Actors
– Identifying links and relationships between Groups and Actors

• Increasingly sophisticated information and tool 
sharing across organizations is a ubiquitous 
subtext

• Create an environment where culturally diverse and 
physically distributed actors can:
1. Expose resources in a controllable manner
2. Participate in collaborative analytical processes
3. Federate insights and knowledge about aggregate resources

Isn’t that the goal of the Web?…



9/7/2004 Page 3

Advanced Systems & Concepts (ASC)

An Experimental Network enables the opportunity

• Prototyping on experimental network:
– Multi-Agency Participation and Data Sharing
– Operational Data
– R&D Technologies
– Access to users

• Challenge of quickly bringing new repositories onto the network
– Poorly described information
– Unique Schemas
– Favored Tools

-

Shared Data



9/7/2004 Page 4

Advanced Systems & Concepts (ASC)

Three Distinct Challenges Encountered by the Team

• Lack of repository schema descriptions
– Often little or no description is available

• Tight coupling between analytical tools and specific 
schemas
– Sharing information between tools is complicated
– Contributing insights back into repositories is nearly impossible

• Robustness to rapidly changing domains
– Nature of domain precludes a priori knowledge of information to 

be stored or the analyses performed

Before the current efforts involving web services and 
Semantic Web languages, the team applied 

traditional relational approaches.



9/7/2004 Page 5

Advanced Systems & Concepts (ASC)

The Prototyping Efforts
Research Efforts to Address the Challenges

• Initiated prototyping efforts combining the use of XML 
Specifications and Semantic Web Languages
– Holistic application of Web Architecture principles in conjunction with 

Semantic Web languages
– Use the principles to enable a loose-coupling between application and 

persistence layer
• Apply the results of the prototyping efforts within the 

Experimental Network
– Initial repository description using RDF/OWL
– The ability to make semantic queries of large distributed repositories 

using XPointer
– An application using these technologies to visualize a link-chart

• Lay the foundation for future efforts focused on federation of 
resources described with Semantic Web languages



9/7/2004 Page 6

Advanced Systems & Concepts (ASC)

Technical Background:
Relational Strategy

• Initial strategy was to consolidate information into 
common schema: Evidence Database (EDB)

• Relational schema designed for maximum flexibility 
to accommodate information sharing amongst 
different user communities

Entity Link

Attribute
Type

AttributeEntity
Type

Link
Type



9/7/2004 Page 7

Advanced Systems & Concepts (ASC)

Technical Background:
Relational Strategy

• Demands for stronger typing 
led to six Entity subclasses

• Now information about entities 
and their attributes stored in 8 
tables instead of 2

• Performance problems 
necessitated changes to the 
database schema

– Tight coupling between application 
code and the database made 
changing the relational schema 
very difficult. 

• An abstraction layer in between 
the application and persistence 
layer was required

Entity Link

Attribute
Type

AttributeEntity
Type

Link
Type

Location Organization

Person
GPE

(Geo-Political
Entity)

Account Event



9/7/2004 Page 8

Advanced Systems & Concepts (ASC)

Solution Architecture: Overview

Three primary concerns:
1. Promote separation of concerns between application layer and 

data persistence layer.
2. Dramatically improve query performance.
3. Maximize overall system scalability.

Data Persistence LayerData Persistence LayerBusiness TierBusiness Tier

Client

Client

Client

Semantic LayerSemantic Layer

SQL +
raw data



9/7/2004 Page 9

Advanced Systems & Concepts (ASC)

Solution Architecture: Key Elements

• Web Services approach for accessing resources
– REpresentational State Transfer (REST architectural style)

• Data model to represent semantics of resources
– Resource Description Framework (RDF)

• Serialization format for resource transmission
– Extensible Markup Language for RDF (RDF/XML)

• Rich mechanism to enable querying through Web 
Service layer
– Server-side XPointer

• Expressive semantic query language to retrieve sub-
resources
– RDF Data Query Language (RDQL)



9/7/2004 Page 10

Advanced Systems & Concepts (ASC)

Technology Sidebar: REST
Uniform Interface Constraints

1. Resource is the unit of 
identification
• Universal document identifiers.

2. Resource state is manipulated 
through the exchange of 
representations
• Document interchange.

3. Generic interaction semantics.
• Create, update, read & delete 

documents.
4. Self-descriptive messaging.

• Intermediaries, e.g., caches 
and security firewalls.

5. Hypermedia is the engine of 
application state
• Hyperlink traversal plus form-

based data submission.

Resource

Application 
Protocol

HTTP

Application 
Protocol

HTTP

Resource 
Identifiers

URI

Resource 
Identifiers

URI

Representation

XML, PNG

Representation

XML, PNG

Interface Wall

linking

res
ponse request

OPTIONS
HEAD
GET
POST
PUT
DELETE

2xx - Success
3xx - Redirect
4xx - Client Error
5xx - Server Error

Generic Interaction Semantics of 
REST Rotary Engine



9/7/2004 Page 11

Advanced Systems & Concepts (ASC)

Solution Architecture: Semantic Data Model
Resource Description Framework (RDF)

• Resource Description Framework (RDF) language 
and Topic Maps considered for data model

• RDF chosen due to ease of use and wider 
acceptance

• EDB’s structure mapped to an RDF vocabulary using 
RDF Schema and OWL

• Model objects (sub-graphs) will be serialized as 
RDF/XML during transport



9/7/2004 Page 12

Advanced Systems & Concepts (ASC)

Solution Architecture: REST-ful Query Mechanism
Server-Side XPointer

• With semantic data model defined, repository can be treated as 
a semantic store

• However queries were previously performed in a fashion that 
was tightly coupled to relational model
– Java & JDBC as query mechanism
– SQL as query language

• Solution architecture needs a query mechanism suitable for 
decoupled interaction with the semantic data model through a 
REST-ful Web Service layer
– Taking a resource-centric view, entire contents of an EDB repository 

instance looks like a very large graph
– This EDB graph is addressable by a URI provided by the Web Service 

and can be represented as RDF/XML
– However the graph is generally too large to even load into memory, 

much less transmit to clients
– Need a request mechanism so that only subgraphs are transmitted

• This sounds somewhat similar in concept to URI fragment 
identifiers



9/7/2004 Page 13

Advanced Systems & Concepts (ASC)

Technology Sidebar: XPointer

• W3C XPointer framework provides extensible processing 
model for URI fragment identifiers
– XPointer is an XML linking technology
– Not to be confused with XPath, which is tied to an XML syntax

• Highly extensible by way of XPointer schemes defined in 
namespaces:
– #xmlns(x=http://www.myorg.org/scheme1)x:xpath(//title)
– #xmlns(r=http://www.myorg.org/scheme2)r:rdf-query(…)
– #xmlns(q=http://www.myorg.org/scheme3)q:tm-query(…)

• However keep in mind that URI fragment identifiers are not 
passed with a normal HTTP request
– Therefore client must GET entire representation and then apply 

XPointer processor
– Extensible, but not scalable



9/7/2004 Page 14

Advanced Systems & Concepts (ASC)

Solution Architecture: REST-ful Query Mechanism
Server-Side XPointer

Server-side XPointer integrates XPointer with HTTP
• The HTTP/1.1 protocol defines an extensible request header 

named “Range”
– The client specifies a “range-unit”, e.g.,

“xpointer”
and a “range-value”, e.g.,

“xmlns(x:http://mindswap.org)x:rss(…)”
• The server sends back only the identified sub-resources for the 

negotiated content type (or a status code indicating an 
appropriate error)

• Provides scalable retrieval and update of XML sub-resources
• Can be used anywhere URIs are used
• Can use both syntactic and logical addressing schemes



9/7/2004 Page 15

Advanced Systems & Concepts (ASC)

Solution Architecture: REST-ful Query Mechanism
Server-Side XPointer

GET /mydoc HTTP/1.1
Host: www.myorg.org
Accept: text/xml
Range-Unit: xpointer
Range: xpointer=a13

HTTP/1.1 206 Partial Content
Mime-Version=1.0
Accept-Range=xpointer
Content-Range=xpointer=a13
Content-Type=multipart/mixed

------=_Part_
Content-Type: text/xml
Content-Length: 25

<bar id="a13">World</bar>
------=_Part_--

http://www.myorg.org/mydoc#a13

GET /mydoc HTTP/1.1
Host: www.myorg.org
Accept: text/xml

HTTP/1.1 200 Ok
Content-Type: text/xml
<!DOCTYPE foo [
<!ELEMENT foo (bar*)>
<!ELEMENT bar (#PCDATA)>
<!ATTLIST bar id ID #IMPLIED>
]>
<foo>

<bar id="a12">Hello</bar>
<bar id="a13">World</bar>

</foo>

http://www.myorg.org/mydoc



9/7/2004 Page 16

Advanced Systems & Concepts (ASC)

Solution Architecture: Semantic Query Language
RDF Data Query Language (RDQL)

• Now that we’ve defined the query mechanism 
(XPointer) , we need to define an addressing scheme 
(query language)

• Don’t want to lock ourselves into a syntax
– Again, XPointer does not necessarily imply XPath
– Syntax lock-in and tight coupling lead to system fragility and 

evolutionary dead-ends

• Need to define meaningful views of the data through 
a logical addressing scheme

• RDF Data Query Language allows for logical 
addressing at the data model and ontology level, 
avoiding serialization syntax



9/7/2004 Page 17

Advanced Systems & Concepts (ASC)

Technology Sidebar: RDQL

• RDQL is a W3C RDF data query language based on SquishQL
• Designed to extract information from RDF graphs
• Query consists of a graph pattern, expressed in triples, that is matched against 

an RDF graph
– Each triple pattern comprised of named variables and RDF values (URIs and literals)
– Query can additionally have constraints on values of those variables returned in answer set
– Query also specifies which variables are Matching sub-graphs are returned in triple form
– Above query selects all entities and returns RDF/XML serialized representation of all Person 

sub-resources
• Several implementations exists, notably JENA

GET /edb HTTP/1.1
Host: www.myorg.org
Accept: application/rdf+xml
Range-Unit: xpointer
Range: xpointer=xmlns(ms=http://mindswap.org)

ms:rdql(SELECT ?e WHERE (?e <edb:hasEntityType> ?t)
(?t <edb:hasDescription> “Person”)

USING edb FOR <http://www.myorg.org/edb-schema/1.0#>)
__________________________________________________________________________

HTTP/1.1 206 Partial Content
Content-Type: application/rdf+xml
<!– Only the selected sub-graph is transmitted to the client. -->
<rdf:RDF … />



9/7/2004 Page 18

Advanced Systems & Concepts (ASC)

Solution Architecture:
Current Status & Reflections

• Outcome of efforts described will be applied on an 
experimental network with real users and data in the 
counter-terrorism domain

• Migration to the solution architecture is an ongoing 
process expected to be demonstrated December 
2004

• To date progress has been made in all key areas
– RDF vocabulary for data defined
– RDF/XML applied for instance data
– Server-Side XPointer processor in progress
– RDQL query scheme in progress
– REST-ful Web Service layer still in design stage



9/7/2004 Page 19

Advanced Systems & Concepts (ASC)

Solution Architecture:
Current Status & Reflections

• The application of REST, RDF, and server-side 
XPointer will greatly enhance information sharing 
capabilities
– The semantic data model can remain fixed while the underlying 

persistent store changes, allowing for separation of concerns
– This separation of concerns will allow the database team to 

optimize the relational tables as needed
– Loosely coupled design promotes flexibility and scalability

• Deploying Semantic Web languages in the context of 
overall Web Architecture is critical

• Could we have achieved these goals without 
semantic web technologies?
– No! Tight coupling constrains flexibility and scalability



9/7/2004 Page 20

Advanced Systems & Concepts (ASC)

Questions


		2004-09-07T10:23:20-0400
	Bradley R. Bebee




