Conceptual Data Model Evolution in Joint Strike Fighter Autonomic Logistics Information System of System Engineering

Tod Hagan Sr. Systems Engineer Modus Operandi, Inc. thagan@modusoperandi.com

Dr. Kent Bimson President Bimson Consulting Kent.Bimson@losc.patrick.af.mil John Walker Sr. Systems Engineer NAVAIR, Patuxent River John.Walker@navy.mil

Geoff Short Sr. Software Engineer USAF, Hill AFB geoff.short@hill.af.mil

Agenda

- Introduction
- Research Questions
- JSF Applied Research
- Research Goals
- Research Progress

 System Engineers have a difficult job building new real-time integrated systems using ever changing external legacy information systems. How can technology help?

Research Questions

- How can relevant and meaningful data be discovered in existing information systems?
- How can the comparison of the target conceptual model to these information systems be automated and the comparison displayed in a meaningful and useful way?
- As the conceptual model and or the source data structures change, how do we reverfiy the mappings between the information systems and the conceptual model?

JSF Applied Research

- Autonomic Logistics Information System (ALIS)
 - JSF is largest DoD acquisition in history
 - Joint DoD, 8 Partner Nations, Sub-Contractors
 - Unprecedented size and complexity
 - Large number of legacy, COTS and new information sources
 - CAMS, NALCOMIS, DECKPLATE, Seibel, etc.
 - Conceptual model developed using Borland Together
 - Many questions remain to be answered...

Research Questions

JSF ALIS operational user questions:

Definition: Ontology - Explicit formal specifications of the terms in a domain and relations among them (Gruber 1993)

Research Goals

- Develop a automated physical data model discovery capability
- Develop a data model comparative analysis capability
- Develop a data model validation and verification capability
- Integrate this new capability with existing tools

Target Capabilities for JSF

Ontology Construction

9

What Makes This Capability Different?

JSF ALIS Scenario

- 1. Logical model created in Borland Together
- 2. JSF applications and data model developed based on approved logical model
- 3. Data sources discovered and previewed
- 4. Logical classes mapped to data sources
- 5. The logical and physical models are compared. Does the "as designed" model match the "as built" model?
- 6. Model discrepancies reported
- 7. Repair discrepancies

Progress: Best Fit Analysis

One candidate physical class for the logical class "Facility"

Real Time Model Analysis

Over time, the logical and/or physical model will change. Classes highlighted in red indicate a discrepancy in the logical to physical model mapping.

Detailed Comparative Analysis

For a detailed look at the discrepancies, select one or more classes and click

The "Facility" class contains three data type mismatches.

Research Summary

- Supports development of logical models or ontologies for complex systems
 - Helps modelers define concepts, attributes & relations
 - Automatically generates "start-up" ontologies by mining concepts and inferring relations from domain documents (TBD)
- Facilitates understanding of data sources and how to integrate them
 - Visually discover and compare schema structures
 - Analyzes what data best fits the ontology
 - Analyzes inconsistencies between data and the ontology
- Deploys ontology and integrated data over the web
 - Web-enables access to integrated data via the ontology through searching, browsing and reporting capabilities
 - Exports ontology and integrated data to standard exchange formats (OWL, Web Services, etc.) for use by other tools