
Page 1 of 14

PAMELA: A Proto-Pattern for Rapidly Delivered,
 Runtime Extensible Systems

This paper describes the architectural and design basis on which EA WebModeler is founded. Theoretical
work began in 1996; theory was translated to implementation during 1997-1999, and culminated in 2000
with the production release of EA WebModeler. The paper describes the proto-pattern for a system
architecture which facilitates very rapid development and extension of an application. The overall
pattern has three major components: Overall Architecture, Process Patterns for standard editing,
viewing and navigation, and Meta Data patterns for knowledge storage. The architecture level pattern
uses meta-data held explicitly in a persistent store and accessible at run time to customize process
patterns implemented in an interpreted language, rendering them executable. The meta-data structure in
turn uses patterns which facilitate extensible data structures and relationships. The use of the proto-
pattern in the design of a commercial knowledge management product illustrates its potential.
Benefits are highlighted and areas for further work indicated.

1. Problem Statement
Business pressures and unclear or rapidly changing requirements require systems that can be developed
very rapidly and extended with minimal delay. Conventional development techniques are inadequate in
addressing this problem. Object oriented techniques have long held much promise and have provided
benefits, but many organizations are still frustrated by slow, expensive development which simply does
not meet their business needs. [Taylor, 1995]. The advent of the Internet and e-Commerce has simply
exacerbated the position.
Applications are increasingly mission critical, having to operate 24 hours per day, 365 days a year in a
global economy that does not pause. There is thus a need for very high reliability and availability in the
systems produced.

2. Previous Approaches
Some of the approaches already used to speed development are listed below, with a discussion of their
effectiveness.

High level languages - assist by allowing developers to work at a higher level of abstraction. Figures from
[Capers Jones, 1997] indicate that language level is a major determinant of developer
productivity. Some researchers, e.g. Taylor [1995], have proposed the ideal of a language at a
business domain level, where users can specify requirements in their own terms

Use of class libraries has certainly helped the developer community to reuse code and save effort in the
implementation of commonly required facilities. This has achieved much success in the areas of graphical
user interfaces (GUIs), relational database and complex internal data structures (e.g. Collections).
The success of Java in the marketplace is largely due to the provision of an increasingly rich environment,
delivered in the form of Java classes. Class library proliferation to support business objects has been less

Page 2 of 14

successful, although the [OMG] and [IBM] have made significant attempts in this direction

Components have been very successful at the developer level, in much the same way as class
libraries. There are vast component libraries available for C++, Visual Basic, Delphi, Java and
Smalltalk. Again, these primarily address technical aspects, such as GUI, collections,
communications, database access and the like.

Application Generators and CASE Tools aim to take models and turn them rapidly into reliable
executable code. While there have been some seminal successes, the general experience is that these
approaches require a great many critical success factors to simultaneously be met, resulting in a high
failure rate [McLeod, 1993]

Visual Assembly Integrated Development Environments, such as Visual Basic (Microsoft),
Delphi(Borland) and Visual Age (IBM) have greatly facilitated rapid construction of graphical interfaces,
and, in the case of the latter, entire applications, by providing visual construction kits where
applications can be built from component palettes by visually combining and connecting parts

We do not discard any of the above approaches; indeed, they are integral to the approach suggested in this
paper. We do contend that they alone do not provide sufficient acceleration of delivery to satisfy business
demands. We believe that the above, augmented by the judicious use of Meta data (ontology), patterns,
and innovative system architecture, provides a promising way of addressing the delivery problem.

3. Relevant Concepts

3.1 Meta Data (Ontology)
Meta data is simply data about data. It typically describes data items, abstract data types, the structure of
records and objects, and sometimes the relationships between these. Meta data is often employed within
the data dictionaries of database and query tools, and in the repositories of CASE tools. It is less
frequently found explicitly in application systems, except as it is contained in the code of table
definitions, record layouts and the like. Meta data is usually fairly abstract: it describes things at a
generic level. A meta-schema or meta-model will generally be concerned with types of things, rather than
the things themselves. Typical elements within a Meta schema within an object oriented context include:

• Object types/classes
• Relationships between the above, including: inheritance, containment, reference (association) and

the multiplicity and constraints.
• Attributes (names, types, multiplicity, legal ranges of values)
• Behavior (methods, functions, rules...)

3.2 Patterns
Patterns are abstracted recurring solutions to similar problems, within a context. They normally express a
general structure, approach, algorithm or design which will (with appropriate adaptation for detail) solve a
certain problem which recurs in a variety of situations. Patterns are normally expressed as a model, or
using a structured pattern language template. See [Appleton, 2001] for a good introduction. The concept
can also be relevant for programming level best practices, where it is more frequently called an idiom.
Patterns can occur at a variety of levels, e.g.:

Page 3 of 14

 Design patterns provide guidance on how to use features within a given environment; or how to
arrange certain components or how to solve a particular design problem.

 Analysis patterns provide examples of good abstractions of problems, expressed as models. They
encapsulate experience of expert analysts in an accessible form.

Architecture patterns provide guidance in arranging the subsystems or layers of a solution,
allocation of responsibility to components and/or management of interfaces in an
architectural solution. A famous example is the Model/View/Controller (MVC) approach of
Trygve Reenskaugh.

In this paper we propose an architectural level pattern for systems with rapid delivery and adaptability.
This pattern, in turn, makes use of other embedded patterns, respectively dealing with extensible data
structures and common processing requirements. We will express our patterns in a pattern language
template synthesized from the work of Buschmann et. Al. [1996] in Patterns of Software Architecture
and Mowbray and Malveau [1997] in CORBA Design Patterns. This template has the following
structure:

• Name - a unique and descriptive name. To be used as a shorthand in referring to the pattern
• Abstract - concise summary of the following information
• Most applicable scale - at what scale (e.g. Industry, enterprise, system, module) does the

solution best apply?
• Problem - what problem does the pattern solve or address? What is the intent of the solution?
• Context - what is the extant situation before application of the pattern?
• Forces - what are the relevant constraints and issues impacting upon the choice of a solution?
• Solution - concise description of the pattern solving the problem, often expressed as a model

Examples / Known Uses - sample applications illustrating suitability of pattern and how it is
adapted. References to where the pattern is known to be used, preferably in production
systems

• Resulting Context / Benefits / Caveats - the situation after the application of the pattern and
any appropriate cautions

• Rationale - justifies the approach pursued in the pattern or the design decisions taken
• Related Patterns - identifies other patterns used with the one documented

3.3 System Architecture
System architecture refers to the overall structure of the application: its components, layers and interfaces
and their respective functions and responsibilities. We have, for many years, used a modified form of the
model, view and controller architecture to design scalable and easily adapted applications [McLeod,
2001]. In the proto-pattern described, this architecture is adapted further to cater for the use of process
patterns within the business process layer, and run time use of meta-data in the model and view layers.

Page 4 of 14

4. Proto-Pattern

4.1 Architecture Level Pattern

4.1.1 Name
PAMELA (Pattern and Meta data Leveraging Architecture)

4.1.2 Abstract
The pattern describes a system architecture which takes advantage of three layer architecture and runtime
customization of process patterns using online meta data to deliver extremely rapid application
development and extensibility.

4.1.3 Most Applicable Scale
Application system architecture

4.1.4 Problem
Traditionally developed applications suffer from poor delivery rate (time to develop from specification)
and are difficult to extend or adapt to changing requirements. Traditional development methods often
assume that requirements can be accurately defined before development is finalized.

Current business climates demands very rapid development of applications, easy and quick extension and
an ability to have applications up and running before all requirements are fully articulated. In addition,
these applications must be robust and offer high uptime and reliability. It is desirable that applications are
database based, multi-user, transactional, secure, web enabled and scalable.

Figure 1 PAMELA system architecture

Page 5 of 14

4.1.5 Context
The context is a business environment requiring systems support where applications must be brought into
production very rapidly. Examples would include some financial environments, medical applications and
knowledge based applications. Some business requirements will be known at the outset and can be
articulated in the form of models. Others will only become apparent through use of the application and
application of information technology, structured information and knowledge to the problem area. The
application may require the storage of both structured data (traditional style records), as well as
documents, multimedia and references to external knowledge assets. It will be desirable that the solution
be transactional, secure and support multiple users, preferably through commodity interface technology,
such as an Internet browser.

4.1.6 Forces
The solution must balance the rapid delivery with the needs for robustness, integrity of data management,
high availability, multi-user support and scalability. The latter implies a multi-tier architecture.

4.1.7 Solution
The PAMELA pattern makes use of the following devices to achieve very rapid development and
adaptability of resulting application:

• Multi-layer architecture with separation of domain knowledge, business process and view
management. This is based on the traditional model-view-controller architecture, as extended by
the Inspired method [McLeod, 1998].

• Meta-data is stored persistently in a repository. Structures do not reflect application or
domain constructs, but rather highly abstracted general structures capable of holding
models of the application domain concepts and structures - effectively a meta model.
Patterns similar to the observations and measurements patterns of Fowler [1997], but extended
to cater for dynamic types and relationships, are used to hold the Meta model.

• Processing is achieved by the runtime customization of process patterns and user interface
patterns which contain necessary logic to create a variety of interfaces customized to a variety of
tasks in viewing and maintaining application and meta-data. These allow for all common
functions: definition of types, capture of data, querying (in a variety of modes, including
graphical), editing, navigation, export and import.

• Customized patterns are executed via interpretation in both the business process layer (process
patterns) and the view layer (interface patterns).

• Security is ensured by carrying a security model in the meta-data and using this to filter the
generated user interfaces to ensure that no data, features or controls which should not be
accessible to a given user are served.

• Processes are transactional and ensure that logical transactions are either committed in their
entirety or rolled back, leaving no trace, in the event of a failure.

Application data is stored in an atomic form that does not require any new database structures,
allowing the physical schema to remain unchanged while new types are defined in the user
application.

Page 6 of 14

4.1.8 Examples / Known Uses
The application of the pattern in the EA WebModeler enterprise architecture management solution will be
discussed later in the paper. At the moment, this is the only production implementation of the pattern as
defined in this paper: (It is possible others have defined similar or equivalent structures). This is one of
the main reasons this is currently suggested as a proto-pattern until further implementations prove wider
applicability.

4.1.9 Resulting Context/ Benefits /Caveats
Very rapid development is possible. Essentially, a person will create meta data describing the domain
objects and relationships of the problem space at a level roughly equivalent to a UML Static Structure
model. Once this is done, the pattern customizer can render usable processes and interfaces and the model
layer can map domain concepts to storage and back again. Once the model is created, the application is
essentially live. Security can then be customized as desired.

Applications are very easily extended by extending the model. This can be achieved without disruption
of the existing application, since model extensions occur within a prescribed set of rules. The application
has a very small footprint, since there are a limited number of process patterns and interface patterns
which are reused for many user domain types. The database is very stable, since only types permitted in
the modeling are required and these are predefined to the storage engine. Only new instances of existing
structures are created. Reliability in the processing system is achieved since no new logic is added,
merely customizations of existing debugged processes. The system can be highly available, since the meta-
data can be edited at runtime, and becomes active once committed. The application does not need to be
replaced, so there is no downtime, unless fundamentally new process pattern customization is added.
Deployment can be eliminated if the developer is equipped to update Meta data remotely. Domain rather
than technical skills are required of application developers, but higher than normal commercial skills
are required from “tool” developers of the meta data maintenance, pattern customizer and model
layer.

4.1.10 Rationale
The approach chosen is based on long experience with the need for flexible systems in commercial
settings. Many systems have been designed by the author and colleagues over many years (more than two
decades) with elements of the solution proposed. The formalization of pattern concepts and the maturation
of interpretive tools and interface environments provided the necessary context and the need to develop an
advanced design for a knowledge management product capable of end user extension at run time provided
the necessary impetus to bring the ideas into focus and formulate them as a pattern.

Reasons for major design choices are given below:

• The multi-layer architecture facilitates ease of maintenance, separation of concerns and scalability
of the implementation. It also provides the possibility of multiple user interface styles operating
with one business logic and domain knowledge layer.

• Dynamic and runtime accessible Meta data was necessary to achieve the level of rapid
development and extensibility required. In effect, we are borrowing from techniques used in query
and prototyping tools which have proven effective in meeting demanding ad hoc requirements for
many years.

• Process patterns allowed us to capture common processing requirements in a reusable form
which could hide much of the complexity from users. They can be pre tested and already
incorporate transaction management, promoting system integrity and reliability.

Page 7 of 14

• Interface patterns allow us to create well behaved interfaces for commonly performed tasks,
which can be customized for the particulars of the domain structures using the meta data
mentioned previously. Like the process patterns, these can be pre tested and can support proven
interaction models.

• The customizer effectively performs the job of a pattern adapter or instantiator in software.
While this is obviously not as powerful as the ministrations of a competent human analyst /
designer, it is extremely rapid, being performed at run time within a normal response time.

• Generating the customized patterns for process and interface in an interpretive language allows
their immediate execution.

• Keeping security at the Meta data level and making this information available to the
customizer allows generation of interfaces customized to allowed activities of a given user.

• Storing information in the database in an atomic form provides a stable database structure,
requiring no schema extension to accommodate newly defined user /domain types.

4.1.11 Related Patterns (described in following two sections)
The various process patterns for customization. These will be related to the following generic activities:

• Creating and amending types and relationships
• Adding, amending and deleting items
• Query and printing
• Navigation through related items

The object pattern for storage of types, attributes, relationships and constraints.

4.2 Meta Data Structure Pattern

4.2.1 Name
Domain Knowledge Structure Pattern

4.2.2 Abstract
Provides a way to dynamically store Meta data structures, and instance data structures, within a stable
schema data store. Meta data allows the modeling of domain concepts and the management of instances
of the corresponding data.

4.2.3 Most applicable scale
System Architecture for Storage

4.2.4 Problem
Conventional databases require schema definitions to be stable and defined before instances can be
created. Altering the design once instances are created will often involve: editing, compiling, changing
schemas, taking database down, offloading data, changing schema and reloading data. These activities
inhibit schema evolution and result in unacceptable or expensive downtime. We sought a structure where
the schema as perceived by the database engine was static. This was achieved by abstracting the
structures commonly required by individual types to a generic level.

Page 8 of 14

4.2.5 Context
Applications that require rapid development or extension without redefinition of the data storage
schema. Volume of data and transactions should not require very high performance.

4.2.6 Forces
It is important to provide flexibility, but to maintain integrity management and reliability. Performance
was considered to be secondary, but should remain acceptable.

4.2.7 Solution
We designed a structure at a level of abstraction similar to that normally found in a data dictionary or
repository for a query tool or CASE tool. We included the following classes in our design:

• Types - which are analogous to classes.
• Relationships - Named relationships between types. These can be semantically rich and represent

domain concepts
• Attributes - Used to define the structure of instances of types, called items in our model.
• Instance’s types (items) and values of attributes for an item were stored independently

Figure 2 - Domain Meta and Instance storage pattern

The pattern can be extended to add constraints on relationships and history or versioning for attribute
values.

Page 9 of 14

4.2.8 Examples / Known Uses
We use these structures within the PAMELA pattern described above. They are also implemented (in
modified form to accommodate production relational database technology) within the production EA
WebModeler product.

4.2.9 Resulting Context / Benefits
The resulting schema model can accommodate runtime definition of types, relationships, attributes,
typing of attributes, ordering of attributes, and mapping of domain structures defined by the meta data
into the storage structures for instance data and vice versa. New types, attributes and
relationships can be added and are immediately available for use without disturbing existing
instances. Existing instances of an extended type will acquire the new attributes with a nil value. The data
store remains relatively compact, since only actual values of attributes and instances are stored

4.2.10 Rationale
For our target class of applications, flexibility is paramount. Performance issues are likely to be
incurred in large data sets using this paradigm, but we expect them to be overcome in all but
the most demanding applications by use of powerful hardware and good database technology at the
engine level.

4.2.11 Related Patterns
We use this pattern as part of the PAMELA pattern described earlier.

4.3 Example Process Pattern

We will only describe an example process pattern, since many are employed within the PAMELA context
and space will not permit explication of all here.

4.3.1 Name
Item Edit.

4.3.2 Abstract
Provides the basic logic for editing an item.

4.3.3 Most applicable scale
System process - controller script.

4.3.4 Problem
Provide generic editing logic for an item.

4.3.5 Context
Functions within the context of the Meta data for types, relationships and attributes. Must respect security
and validation criteria. Historically, programmers would code this functionality for each new type/
record/ object, sometimes by customizing a template.

4.3.6 Forces
Need to provide a good user interface, respect security and manage integrity of data. In our case, we also
want to provide for customization to support a variety of types.

4.3.7 Solution

Page 10 of 14

A pattern is developed in the target interpreted language. This provides a template, which is later parsed
to insert/replace/modify where necessary to accommodate the attributes of the specific type to be edited.
The pattern contains logic for communicating with the interface layer, retrieval of domain data from the
model layer, and managing transactions. It will ensure integrity by validating keys and entered data
against attribute types and valid values held in the Meta data. The variables from the Meta data are used to
customize the process pattern, rendering it as a specific instance, customized to the selected type. The
customized pattern is executed interpretively. The template for edit might appear as follows:
(we have used pseudo code to remain implementation neutral)

EDIT
Obtain list of items of type <Type>
Pass to user interface <Type:Edit> for list display
Receive selected item key from interface <Type:Edit>
Retrieve selected item attribute values from Model passing <Type> and
<Key> Retrieve selected item type <Type> valid values from Meta Data
Begin transaction
Lock <item> for potential update
Pass retrieved value/type pairs to interface
<Type:Edit>
Pass valid values collection to interface
<Type:Edit> Receive modified values from
interface <Type:Edit> Validate modified items
using valid values
Return error to interface <Type:Edit> if validation
fails
Update <item> via Model layer
End transaction

4.3.8 Examples / Known Uses
Used within the PAMELA architecture pattern previously described. Used within the EA WebModeler
enterprise architecture management product.

4.3.9 Resulting Context / Benefits / Caveats
Process patterns provide tested logic to generically implement processing for new types. Customization
process allows rapid delivery of high functionality for new types added without additional effort.
Application is small, since code is reused for many types. Errors will affect all types equally -
maintenance of the patterns must be very carefully performed if necessary. Only anticipated processing
can be performed using patterns already in the “repertoire” of the product.

4.3.10 Rationale
Process patterns capture the common logic required to perform generically required functions common to
all types. These include the basic functions of adding objects, deleting objects, editing values, querying
data, navigation through relationships etc.

Runtime customization provides rapid system extension capability. Reuse is promoted and system
stability improved through the use of well tested logic.

4.3.11 Related Patterns
This pattern is used as part of the PAMELA architecture pattern described previously. It is implemented

Page 11 of 14

in a modified form in the production EA WebModeler enterprise architecture management product.

5. Example: Agilense EA WebModeler
Many of the principles discussed in the foregoing have been applied in EA WebModeler, a
production web based knowledge management tool applied to enterprise architecture management. The
product has also been used in production to support methods and program management activities within
corporate clients. Because of the flexibility and ability to store varied knowledge content, it has been used
by collaborating groups of professionals and consultants on varied activities. Design goals included the
following:

• Support for multiple concurrent users in a web based environment.
• Persistent, shared storage of both Meta and instance data in a commodity relational database

engine on a server.
• Minimal requirements for client - specifically, a current level (Version 4) popular browser

requiring no plug ins, Java Applets or ActiveX Controls.
• Very rapid modeling to accommodate a specific domain and to extend capabilities in that

domain with experience.
• High availability and reliability.
• Support for structured data (held internally), rich content (held externally) and

document and knowledge assets (held on server and managed via versions and linked
to via hyperlinks, respectively).

The architecture, tool and design choices were as follows:

• The tool resides on a server, between a standard web server and a relational database engine.

• It uses a web browser for the user interface, running as a remote client. This interface would
be used for both end users and meta data development users.

• IBM Visual Age was used, as a productive tool development environment with a rich
class and component library, as well as visual construction and valuable feature
frameworks for object persistence (Object Extender) and web session management (Web
Connect).

• Client interface customized patterns were rendered in standard HTML and Java Script as the
most compatible and generically supported vehicle for current generation browsers. Unlike
the picture shown in the PAMELA pattern, EA WebModeler holds the interface template
code in the process layer, to have this available on the server and renders the interface code to
the client. In this way, the client need never have connected to the server before or have
anything installed to successfully interact with the server and render a usable interface.

• Meta data editing was also accomplished via the same interface strategy, and meta data
storage was achieved through the model layer, mainly to take advantage of the sophisticated
object to relational framework and transaction management provided by Object Extender.

Page 12 of 14

• Web Connect was used between the business logic and interface layers to take care of session
management and preserving session data between client invocations of server side logic. This
is a major help in the HTTP protocol, which is inherently stateless.

• System parameters are also held in the database. These allow customization of look and
feel, hold details of server paths, and allow tailoring of many features of the tool without
programming or taking the system down.

EA WebModeler Architecture

Figure 3 – EA WebModeler as example of adaptable architecture

Page 13 of 14

6. Conclusion
The design goals were met. EA WebModeler has proven tailorable to a variety of contexts, including
enterprise architecture, customer relationship management, data modeling, program management, and
methods management. A system to manage course information for a University of Cape Town post
graduate program was implemented within two days including product installation, modeling and going
live with user security in place. A software house has used the tool to bring up a production system for
fault reporting, developer allocation, release scheduling and tracking within less than a day.

Rapid development of Meta data to address a new domain was recently demonstrated by deploying the
product to manage data related to postgraduate university courses, including courses, students, schedules,
deliverables, readings, reference resources, student submissions, subject index and various other aspects.
Modeling the new domain and loading sufficient test data to verify the model’s viability was
accomplished in under two days. The resultant model included about 17 domain “classes” and some 70
relationships. The model has been extended as course administration progressed and new requirements
can usually be implemented in a matter of minutes. To summarize, the approach has provided:

• Extremely rapid development, runtime extension
• No downtime for alterations to the system
• Capability for remote development, adding or extending meta data from a browser client
• Development concurrent with production use by end users
• Support for multiple developers working concurrently

The application is surprisingly small (some 8Mb comprising about 4Mb of own code and 4Mb of virtual
machine and support code). Reliability has been very good.

7. Further Work
The PAMELA pattern should be developed further to incorporate performance optimizations, allowing
the approach to be used in demanding performance and volume applications. We would like to see the
pattern applied using an object and SQL3 database for persistence. The pattern can be applied to other
technical environments e.g. J3EE and .Net, where the client side interface can be rendered as Java beans
and applets, and the server side processing accomplished as EJB’s or C# code. XML and XSL/CSS could
also replace the current HTML for client formatting. We plan to add rules processing, also repository
driven, to allow users to construct unanticipated processes.

Page 14 of 14

References
Appleton, Brad, 2001, Patterns and Software: Essential Concepts and
Terminology, www.enteract.com/~bradapp/docs/patterns-intro.html

Beck, Kent, 1997, Smalltalk Best Practice Patterns, Prentice Hall.

Buschmann, F; Meunier, R; Rohnert, H; Sommerlad, P and Stal, M, 1996, Pattern-Oriented Software
Architecture - A System of Patterns. Wiley and Sons, 1996

Coplien, James, 1998, Software Design Patterns: Common Questions and
Answers, ftp://st.cs.uiuc.edu/pub/patterns/papers/PatQandA.ps, accessed Jan 2001

Jones, Capers, 1997, Programming Languages Table, Software Productivity Research
database, www.spr.com/library/0langtbl.htm, accessed Jan 2001

Fowler, Martin, 1997, Analysis Patterns - Reusable Object Models, Addison Wesley

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John, 1994, Design Patterns, Addison Wesley,
1994

IBM, www.ibm.com

Lea, Doug, 1994, "Christopher Alexander: An Introduction for Object-Oriented Designers" in Software
Engineering Notes, ACM SIGSOFT, vol 19, no 1, p 39, Jan 1994

McLeod, Graham, 1993, An empirical investigation into the use of CASE technology in South Africa,
University of Cape Town working paper

McLeod, Graham, 1998, Linking Business Object Analysis to a Model View Controller Based Design
Architecture, Proceedings of the Third CAiSE/IFIP 8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design EMMSAD’98, Pisa, Italy, June 8-9, 1998

McLeod, Graham, 2001, Beyond UML: Advanced Systems Delivery with Objects, Components,
Patterns and Middleware, Inspired Press, 2001

Mowbray, Thomas & Malveau, Raphael, 1997, CORBA Design Patterns, John Wiley. Object
Management Group (OMG), www.omg.org

Pree, Wolfgang, 1995, Design Patterns for Object-Oriented Software Development, Addison Wesley.
Taylor, David, 1995, Business Engineering with Object Technology, John Wiley

http://www.enteract.com/~bradapp/docs/patterns-intro.html
ftp://st.cs.uiuc.edu/pub/patterns/papers/PatQandA.ps,
http://www.spr.com/library/0langtbl.htm,
http://www.ibm.com
http://www.omg.org

