
USDL: A Service-Semantics Description Language for Automatic

Service Discovery and Composition.∗

Srividya Kona, Ajay Bansal, Luke Simon,
Ajay Mallya, and Gopal Gupta
University of Texas at Dallas

Richardson, TX 75083

Thomas D. Hite
Metallect Corp

2400 Dallas Parkway
Plano, TX 75093

Abstract

For web-services to become practical, an infrastructure needs to be supported that allows
users and applications to discover, deploy, compose, and synthesize services automatically. This
automation can take place only if a formal description of the web-services is available. In
this paper we present an infrastructure using USDL (Universal Service-Semantics Description
Language), a language for formally describing the semantics of web-services. USDL is based on
the Web Ontology Language (OWL) and employs WordNet as a common basis for understanding
the meaning of services. USDL can be regarded as formal service documentation that will allow
sophisticated conceptual modeling and searching of available web-services, automated service
composition, and other forms of automated service integration. A theory of service substitution
using USDL is presented. The rationale behind the design of USDL along with its formal
specification in OWL is presented with examples. We also compare USDL with other approaches
like OWL-S, WSDL-S, and WSML and show that USDL is complementary to these approaches.

1 Introduction

A web-service is a program available on a web-site that “effects some action or change” in the world
(i.e., causes a side-effect). Examples of such side-effects include a web-base being updated because
of a plane reservation made over the Internet, a device being controlled, etc. The next milestone
in the Web’s evolution is making services ubiquitously available. As automation increases, these
web-services will be accessed directly by the applications themselves rather than by humans. In
this context, a web-service can be regarded as a “programmatic interface” that makes application
to application communication possible. An infrastructure that allows users to discover, deploy,
synthesize and compose services automatically needs to be supported in order to make web-services
more practical.

To make services ubiquitously available we need a semantics-based approach such that appli-
cations can reason about a service’s capability to a level of detail that permits their discovery,
deployment, composition and synthesis. Several efforts are underway to build such an infrastruc-
ture. These efforts include approaches based on the semantic web (such as OWL-S [5]) as well as
those based on XML, such as Web Services Description Language (WSDL [7]). Approaches such
∗This is an expanded version of the paper ‘A Universal Service-Semantics Description Language’ that appeared

in European Conference On Web Services, 2005 [15] and received its best paper award.

1

as WSDL are purely syntactic in nature, that is, they merely specify the format of the service. In
this paper we present an approach that is based on semantics. Our approach can be regarded as
providing semantics to WSDL statements. We present the design of a language called Universal
Service-Semantics Description Language (USDL) which service developers can use to specify for-
mal semantics of web-services [14, 15]. Thus, if WSDL can be regarded as a language for formally
specifying the syntax of web services, USDL can be regarded as a language for formally specifying
their semantics. USDL can be thought of as formal service documentation that will allow sophis-
ticated conceptual modeling and searching of available web-services, automated composition, and
other forms of automated service integration. For example, the WSDL syntax and USDL seman-
tics of web services can be published in a directory which applications can access to automatically
discover services. That is, given a formal description of the context in which a service is needed,
the service(s) that will precisely fulfill that need can be determined. The directory can then be
searched for the exact service, or two or more services that can be composed to synthesize the
required service, etc.

To provide formal semantics, a common denominator must be agreed upon that everybody can
use as a basis of understanding the meaning of services. This common conceptual ground must
also be somewhat coarse-grained so as to be tractable for use by both engineers and computers.
That is, semantics of services should not be given in terms of low-level concepts such as Turing
machines, first-order logic and their variants, since service description, discovery, and synthesis
then become tasks that are practically intractable and theoretically undecidable. Additionally,
the semantics should be given at a conceptual level that captures common real world concepts.
Furthermore, it is too impractical to expect disparate companies to standardize on application (or
domain) specific ontologies to formally define semantics of web-services, and instead a common
universal ontology must be agreed upon with additional constructors. Also, application specific
ontologies will be an impediment to automatic discovery of services since the application developer
will have to be aware of the specific ontology that has been used to describe the semantics of the
service in order to frame the query that will search for the service. The danger is that the service
may not be defined using the particular domain specific ontology that the application developer
uses to frame the query, however, it may be defined using some other domain specific ontology, and
so the application developer will be prevented from discovering the service even though it exists.
These reasons make an ontology based on OWL WordNet [2, 8] a suitable candidate for a universal
ontology of basic concepts upon which arbitrary meets and joins can be added in order to gain
tractable flexibility.

We describe the meaning of conceptual modeling and how it could be obtained via a common
universal ontology based on WordNet in the next section. Section 3, gives a brief overview of
how USDL attempts to semantically describe web-services. In section 4, we discuss precisely how
a WSDL document can be prescribed meaning in terms of WordNet ontology. Section 5 gives a
complete USDL annotation for a Hotel-Reservation service. In section 6 we present the theoretical
foundations of service description and substitution in USDL. Automatic discovery of web-services
using USDL is discussed in section 7. Composition of web-services using USDL is discussed in
section 8. Comparison of USDL with other approaches like OWL-S and WSML is discussed in
section 9. Section 10 shows related work. Finally, conclusions and future work are addressed in the
last section.

2

2 A Universal Ontology

To describe service semantics, we should agree on a common ground to model our concepts. We
can describe what any given web-service does from first principles using approaches based on logic.
This is the approach taken by frameworks such as dependent type systems and programming logics
prevalent in the field of software verification where a “formal understanding” of the service/software
is needed in order to verify it. However, such solutions are both low-level, tedious, and undecidable
to be of practical use. Instead, we are interested in modeling higher-level concepts. That is, we
are more interested in answering questions such as, what does a service do from the end user’s or
service integrator’s perspective, as opposed to the far more difficult questions, such as, what does the
service do from a computational view? We care more about real world concepts such as “customer”,
“bank account”, and “flight itinerary” as opposed to the data structures and algorithms used by
a service to model these concepts. The distinction is subtle, but is a distinction of granularity as
well as a distinction of scope.

In order to allow interoperability and machine-readability of our documents, a common con-
ceptual ground must be agreed upon. The first step towards this common ground are standard
languages such as WSDL and OWL. However, these do not go far enough, as for any given type
of service there are numerous distinct representations in WSDL and for high-level concepts (e.g., a
ternary predicate), there are numerous disparate representations in terms of OWL, representations
that are distinct in terms of OWL’s formal semantics, yet equal in the actual concepts they model.
This is known as the semantic aliasing problem: distinct syntactic representations with distinct
formal semantics yet equal conceptual semantics. For the semantics to equate things that are con-
ceptually equal, we need to standardize a sufficiently comprehensive set of basic concepts, i.e., a
universal ontology, along with a restricted set of connectives.

Industry specific ontologies along with OWL can also be used to formally describe web-services.
This is the approach taken by the OWL-S language [5]. The problem with this approach is that it
requires standardization and undue foresight. Standardization is a slow, bitter process, and industry
specific ontologies would require this process to be iterated for each specific industry. Furthermore,
reaching a industry specific standard ontology that is comprehensive and free of semantic aliasing
is even more difficult. Undue foresight is required because many useful web services will address
innovative applications and industries that don’t currently exist. Standardizing an ontology for
travel and finances is easy, as these industries are well established, but new innovative services in
new upcoming industries also need be ascribed formal meaning. A universal ontology will have no
difficulty in describing such new services.

We need an ontology that is somewhat coarse-grained yet universal, and at a similar conceptual
level to common real world concepts. WordNet [8] is a sufficiently comprehensive ontology that
meets these criteria. As stated, part of the common ground involves standardized languages such as
OWL. For this reason, WordNet cannot be used directly, and instead we make use of an encoding of
WordNet as an OWL base ontology [2]. Using an OWL WordNet ontology allows our solution to use
a universal, complete, and tractable framework, which lacks the semantic aliasing problem, to which
we map web service messages and operations. As long as this mapping is precise and sufficiently
expressive, reasoning can be done within the realm of OWL by using automated inference systems
(such as, one based on description logic), and we automatically reap the wealth of semantic infor-
mation embodied in the OWL WordNet ontology that describes relationships between ontological
concepts, especially subsumption (hyponym-hypernym) and equivalence (synonym) relationships.

3

3 USDL: An Overview

As mentioned earlier, USDL can be regarded as a language to formally specify the semantics of
web-services. It is perhaps the first attempt to capture the semantics of web-services in a universal,
yet decidable manner. It is quite distinct from previous approaches such as WSDL and OWL-S
[5]. As mentioned earlier, WSDL only defines syntax of the service; USDL provides the missing
semantic component. USDL can be thought of as a formal language for service documentation.
Thus, instead of documenting the function of a service as comments in English, one can write USDL
statements that describe the function of that service. USDL is quite distinct from OWL-S, which
is designed for a similar purpose, and as we shall see the two are in fact complementary. OWL-S
primarily describes the states that exist before and after the service and how a service is composed
of other smaller sub-services (if any). Description of atomic services is left under-specified in OWL-
S. They have to be specified using domain specific ontologies; in contrast, atomic services are
completely specified in USDL, and USDL relies on a universal ontology (OWL WordNet Ontology)
to specify the semantics of atomic services. USDL and OWL-S are complementary in that OWL-S’s
strength lies in describing the structure of composite services, i.e., how various atomic services are
algorithmically combined to produce a new service, while USDL is good for fully describing atomic
services. Thus, OWL-S can be used for describing the structure of composite services that combine
atomic services described using USDL.

USDL describes a service in terms of portType and messages, similar to WSDL. The semantics
of a service is given using the OWL WordNet ontology: portType (operations provided by the ser-
vice) and messages (operation parameters) are mapped to disjunctions of conjunctions of (possibly
negated) concepts in the OWL WordNet ontology. The semantics is given in terms of how a service
affects the external world. The present design of USDL assumes that each side-effect is one of
following four operations: create, update, delete, or find. A generic affects side-effect is used when
none of the four apply. An application that wishes to make use of a service automatically should
be able to reason with WordNet atoms using the OWL WordNet ontology.

We also define the formal semantics of USDL. As stated earlier, the syntactic terms describing
portType and messages are mapped to disjunctions of conjunctions of (possibly negated) OWL
WordNet ontological terms. A service is then formally defined as a function, labeled by the side-
effect. The main contribution of our work is the design of a universal service-semantics description
language (USDL), along with its formal semantics, and a theory of service substitution using it.

4 Design of USDL

The design of USDL rests on two formal languages: Web Services Description Language (WSDL)
[7] and Web Ontology Language (OWL) [6]. The Web Services Description Language (WSDL) [7]
is used to give a syntactic description of the name and parameters of a service. The description
is syntactic in the sense that it describes the formatting of services on a syntactic level of method
signatures, but is incapable of describing what concepts are involved in a service and what a service
actually does, i.e., the conceptual semantics of the service. Likewise, the Web Ontology Language
(OWL) [6], was developed as an extension to the Resource Description Framework (RDF) [3],
both standards are designed to allow formal conceptual modeling via logical ontologies, and these
languages also allow for the markup of existing web resources with semantic information from the
conceptual models. USDL employs WSDL and OWL in order to describe the syntax and semantics

4

of web-services. WSDL is used to describe message formats, types, and method prototypes, while a
specialized universal OWL ontology is used to formally describe what these messages and methods
mean, on a conceptual level.

USDL can be regarded as the semantic counterpart to the syntactic WSDL description. WSDL
documents contain two main constructs to which we want to ascribe conceptual meaning: messages
and portType. These constructs are aggregates of service components which will be directly as-
cribed meaning. Messages consist of typed parts and portType consists of operations parameterized
on messages. USDL defines OWL surrogates or proxies of these constructs in the form of classes,
which have properties with values in the OWL WordNet ontology.

4.1 Concept

USDL defines a generic class called Concept which is used to define the semantics of parts of
messages.

<owl:Class rdf:ID="Concept">
<rdfs:comment>Generic class of USDL Concept</rdfs:comment>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BasicConcept"/>
<owl:Class rdf:about="#QualifiedConcept"/>
<owl:Class rdf:about="#InvertedConcept"/>
<owl:Class rdf:about="#ConjunctiveConcept"/>
<owl:Class rdf:about="#DisjunctiveConcept"/>

</owl:unionOf>
</owl:Class>

The USDL Concept class denotes the conceptual objects constructed from the OWL WordNet
ontology. For most purposes, message parts and other WSDL constructs will be mapped to a
subclass of USDL Concept so that useful concepts can be modeled as set theoretic formulas of
union, intersection, and negation of basic concepts. These subclasses of Concept are BasicConcept,
QualifiedConcept, InvertedConcept, ConjunctiveConcept, and DisjunctiveConcept.

4.1.1 Basic Concept

An BasicConcept is the actual contact point between USDL and WordNet. This class acts as proxy
for WordNet lexical entities.

<owl:Class rdf:about="#BasicConcept">
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isA"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The property cardinality restrictions require all USDL BasicConcepts to have exactly one defin-
ing value for the isA property. An instance of BasicConcept is considered to be equated with a
WordNet lexical concept given by the isA property.

5

<owl:ObjectProperty rdf:ID="isA">
<rdfs:domain rdf:resource="#BasicConcept"/>
<rdfs:range rdf:resource="&wn;LexicalConcept"/>

</owl:ObjectProperty>

4.1.2 Qualified Concept

A QualifiedConcept is a concept classified by another lexical concept.

<owl:Class rdf:about="#QualifiedConcept">
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isA"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#ofKind"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The property cardinality restrictions require all USDL QualifiedConcepts to have exactly one
defining value for the isA property, and exactly one value for the ofKind property. An instance of
QualifiedConcept is considered to be equated with a lexical concept given by the isA property and
classified by a lexical concept given by the optional ofKind property.

<owl:ObjectProperty rdf:ID="isA">
<rdfs:domain rdf:resource="#QualifiedConcept"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="ofKind">
<rdfs:domain rdf:resource="#QualifiedConcept"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

4.1.3 Inverted Concept

In case of InvertedConcept the corresponding semantics are the complement of USDL concepts.

<owl:Class rdf:about="#InvertedConcept">
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasConcept"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1

6

</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasConcept">
<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

4.1.4 Conjunctive and Disjunctive Concept

The ConjunctiveConcept and DisjunctiveConcept respectively denote the intersection and union of
USDL Concepts.

<owl:Class rdf:about="#ConjunctiveConcept">
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasConcept"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

2
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#DisjunctiveConcept">
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasConcept"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

2
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The property cardinality restrictions on ConjunctiveConcept and DisjunctiveConcept allow for
n-ary intersections and unions (where n ≥ 2) of USDL concepts. For generality, these concepts are
either BasicConcepts, QualifiedConcepts, ConjunctiveConcepts, DisjunctiveConcepts, or Inverted-
Concepts.

4.2 Affects

The affects property is specialized into four types of actions common to enterprise services: creates,
updates, deletes, and finds.

<owl:ObjectProperty rdf:ID="affects">
<rdfs:comment>
Generic class of USDL Affects

</rdfs:comment>
<rdfs:domain rdf:resource="#Operation"/>
<rdfs:range rdf:resource="#Concept"/>

7

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#creates">
<rdfs:subPropertyOf rdf:resource="#affects"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#updates">
<rdfs:subPropertyOf rdf:resource="#affects"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#deletes">
<rdfs:subPropertyOf rdf:resource="#affects"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#finds">
<rdfs:subPropertyOf rdf:resource="#affects"/>

</owl:ObjectProperty>

Note that each of these specializations inherits the domain and range of the affects property.
Most services can be described using one of these types of effects. For those services that cannot be
described in terms of these specializations, the parent affects property can be used instead which
is described as an USDL concept.

4.3 Conditions and Constraints

Services may have some external conditions (pre-conditions and post-conditions) specified on the
input or output parameters. Condition class is used to describe all such constraints. Conditions
are represented as conjunction or disjunction of binary predicates. Predicate is a trait or aspect of
the resource being described.

<owl:Class rdf:ID="Condition">
<rdfs:comment>
Generic class of USDL Condition

</rdfs:comment>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AtomicCondition"/>
<owl:Class rdf:about="#ConjunctiveCondition"/>
<owl:Class rdf:about="#DisjunctiveCondition"/>

</owl:unionOf>
</owl:Class>

<owl:Class rdf:about="#AtomicCondition">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasConcept"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#onPart"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

8

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasValue"/>
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

A condition has exactly one value for the onPart property and at most one value for the hasValue
property, each of which is of type USDL Concept.

<owl:ObjectProperty rdf:ID="onPart">
<rdfs:domain rdf:resource="#AtomicCondition"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasValue">
<rdfs:domain rdf:resource="#AtomicCondition"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

4.3.1 Conjunctive and Disjunctive Conditions

The ConjunctiveCondition and DisjunctiveCondition respectively denote the conjunction and dis-
junction of USDL Conditions.

<owl:Class rdf:about="#ConjunctiveCondition">
<rdfs:subClassOf rdf:resource="#Condition"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasCondition"/>
<owl:minCardinality rdf:datatype= "&xsd;nonNegativeInteger">

2
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#DisjunctiveCondition">
<rdfs:subClassOf rdf:resource="#Condition"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasCondition"/>
<owl:minCardinality rdf:datatype= "&xsd;nonNegativeInteger">

2
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

9

<owl:ObjectProperty rdf:ID="hasCondition">
<rdfs:domain rdf:resource="#Concept"/>
<rdfs:range rdf:resource="#Condition"/>

</owl:ObjectProperty>

The property cardinality restrictions on ConjunctiveCondition and DisjunctiveCondition allow
for n-ary conjunctions and disjunctions (where n ≥ 2) of USDL conditions. In general any n-ary
condition can be written as a combination of conjunctions and disjunctions of binary conditions.

4.4 Messages

Services communicate by exchanging messages. As mentioned, messages are simple tuples of actual
data, called parts. Take for example, a flight reservation service similar to the SAP ABAP Work-
bench Interface Repository for flight reservations [4], which makes use of the following message.

<message name="#ReserveFlight_Request">
<part name="#CustomerName" type="xsd:string">
<part name="#FlightNumber" type="xsd:string">
<part name="#DepartureDate" type="xsd:date">
...

</message>

The USDL surrogate for a WSDL message is the Message class, which is a composite entity
with zero or more parts. Note that for generality, messages are allowed to contain zero parts.

<owl:Class rdf:ID="Message">
<rdfs:comment>
Generic class of USDL Message

</rdfs:comment>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Input"/>
<owl:Class rdf:about="#Output"/>

</owl:unionOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasPart"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">
0

</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Input">
<rdfs:subClassOf rdf:resource="#Message"/>

</owl:Class>

<owl:Class rdf:about="#Output">
<rdfs:subClassOf rdf:resource="#Message"/>

</owl:Class>

Each part of a message is simply a USDL Concept, as defined by the hasPart property. Seman-
tically messages are treated as tuples of concepts.

10

<owl:ObjectProperty rdf:ID="hasPart">
<rdfs:domain rdf:resource="#Message"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

Continuing our example flight reservation service, the ReserveF lightRequest message is given
semantics using USDL as follows, where &wn;customer and &wn;name are valid XML references to
WordNet lexical concepts.

<Message rdf:about="#ReserveFlight_Request">
<hasPart rdf:resource="#CustomerName"/>
<hasPart rdf:resource="#FlightNumber"/>
<hasPart rdf:resource="#DepartureDate"/>

</Message>

<QualifiedConcept rdf:about="#CustomerName">
<isA rdf:resource="#Name"/>
<ofKind rdf:resource="#Customer"/>

</QualifiedConcept>

<BasicConcept rdf:about="#Name">
<isA rdf:resource="&wn;name"/>

</BasicConcept>

<BasicConcept rdf:about="#Customer">
<isA rdf:resource="&wn;customer"/>

</BasicConcept>

<!-- Similarly concepts FlightNumber and DepartureDate are defined -->

4.5 PortType

A service consists of portType, which is a collection of procedures or operations that are parametric
on messages. Our example flight reservation service might contain a portType definition for a flight
reservation service that takes as input an itinerary and outputs a reservation receipt.

<portType rdf:about="#Flight_Reservation">
<hasOperation rdf:resource="#ReserveFlight">

</portType>

<operation rdf:about="#ReserveFlight">
<hasInput rdf:resource="#ReserveFlight_Request"/>
<hasOutput rdf:resource="#ReserveFlight_Response"/>
<creates rdf:resource="#FlightReservation" />

</operation>

The USDL surrogate is defined as the class portType which contains zero or more Operations
as values of the hasOperation property.

<owl:Class rdf:about="#portType">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=#hasOperation"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

0
</owl:minCardinality>

11

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasOperation">
<rdfs:domain rdf:resource="#portType"/>
<rdfs:range rdf:resource="#Operation"/>

</owl:ObjectProperty>

As with the case of messages, portTypes are not directly assigned meaning via the OWL Word-
Net ontology. Instead the individual Operations are described by their side-effects via an affects
property. Note that the parameters of an operation are already given meaning by ascribing meaning
to the messages that constitute the parameters.

<owl:Class rdf:about="#Operation">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasInput"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">
0

</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasOutput"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">

0
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#affects"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

An operation can have one or more values for the affects property, all of which are of type
USDL Concept, which is the target of the effect.

<owl:ObjectProperty rdf:ID="hasInput">
<rdfs:domain rdf:resource="#Operation"/>
<rdfs:range rdf:resource="#Input"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOutput">
<rdfs:domain rdf:resource="#Operation"/>
<rdfs:range rdf:resource="#Ouput"/>

</owl:ObjectProperty>

12

<owl:ObjectProperty rdf:ID="affects">
<rdfs:domain rdf:resource="#Operation"/>
<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

5 Semantic Description of a Service

This section shows an example syntactic description of a web-service using WSDL and its corre-
sponding semantic description using USDL.

Hotel Reservation Service: The service described here is a simplified hotel-reservation service
published in a web-service registry. This service can be treated as atomic: i.e., no interactions
between buying and selling agents are required, apart from invocation of the service and receipt
of its outputs by the buyer. Given certain inputs and pre-conditions, the service provides certain
outputs and has specific effects.

This service takes in a HotelChain, StartDate, NumNights, NumPersons, NumRooms, First-
Name, and LastName as input parameters. It has a few input pre-conditions that NumNights,
NumRooms must be greater than zero and StartDate must be greater than today. This service
outputs a Reservation at the end of transaction.

5.1 WSDL definition

The following is WSDL definition of the service. This service provides a single operation called
ReserveHotel. The input and output messages are defined below. The conditions on the service
cannot be described using WSDL.

<definitions ...>
<portType name="ReserveHotel_Service">

<operation name="ReserveHotel">
<input message="ReserveHotel_Request"/>
<output message="ReserveHotel_Response"/>

</operation>
</portType>

<message name="ReserveHotel_Request">
<part name="HotelChain" type="xsd:string"/>
<part name="StartDate" type="xsd:date"/>
<part name="NumNights" type="xsd:integer"/>
<part name="NumPersons" type="xsd:integer"/>
<part name="NumRooms" type="xsd:integer"/>
<part name="FirstName" type="xsd:integer"/>
<part name="LastName" type="xsd:integer"/>

</message>

<message name="ReserveHotel_Response">
<part name="Reservation" type="xsd:string"/>

</message>
...

</definitions>

13

5.2 USDL annotation

The following is the complete USDL annotation
corresponding to the above mentioned WSDL
description. The input pre-condition and the
global constraint on the service are also described
semantically.

<definitions>
<portType rdf:about=

"#ReserveHotel_Service">
<hasOperation rdf:resource=

"#ReserveHotel"/>
</portType>

<operation rdf:about="#ReserveHotel">
<hasInput rdf:resource=

"#ReserveHotel_Request"/>
<hasOutput rdf:resource=

"#ReserveHotel_Response"/>
<creates rdf:resource=

"#HotelReservation"/>
</operation>

<Message rdf:about=
"#ReserveHotel_Request">

<hasPart rdf:resource="#HotelChain"/>
<hasPart rdf:resource="#StartDate"/>
<hasPart rdf:resource="#NumNights"/>
<hasPart rdf:resource="#NumPersons"/>
<hasPart rdf:resource="#NumRooms"/>
<hasPart rdf:resource="#FirstName"/>
<hasPart rdf:resource="#LastName"/>

</Message>

<Message rdf:about=
"#ReserveHotel_Response">

<hasPart rdf:resource=
"#HotelReservation"/>

</Message>

<Condition rdf:about="#greaterThanToday">
<hasConcept rdf:resource="#greaterThan"/>
<onPart rdf:resource="#StartDate"/>
<hasValue rdf:resource="#TodaysDate"/>

</Condition>

<!-- Similarly we can define Condition
#greaterThanZero on parts #NumRooms
and #NumNights -->

<QualifiedConcept rdf:about="#HotelChain">
<isA rdf:resource="#Chain"/>
<ofKind rdf:resource="#Hotel"/>

</QualifiedConcept>

<QualifiedConcept rdf:about="#StartDate">
<isA rdf:resource="#Date"/>
<ofKind rdf:resource="#Start"/>

</QualifiedConcept>

<QualifiedConcept rdf:about="#TodaysDate">
<isA rdf:resource="#Date"/>
<ofKind rdf:resource="#Today"/>

</QualifiedConcept>

<!-- Similarly we can define Qualified
Concepts for #NumNights, #NumPersons,
#NumRooms, #FirstName and #LastName -->

<BasicConcept rdf:about="#Hotel">
<isA rdf:resource="&wn;hotel"/>

</BasicConcept>

<BasicConcept rdf:about="#Chain">
<isA rdf:resource="&wn;chain"/>

</BasicConcept>

<BasicConcept rdf:about="#Start">
<isA rdf:resource="&wn;start"/>

</BasicConcept>

<BasicConcept rdf:about="#Date">
<isA rdf:resource="&wn;date"/>

</BasicConcept>

<BasicConcept rdf:about="#greaterThan">
<isA rdf:resource="&wn;greater_than"/>

</BasicConcept>

<BasicConcept rdf:about="#Date">
<isA rdf:resource="&wn;date"/>

</BasicConcept>

<BasicConcept rdf:about="#Today">
<isA rdf:resource="&wn;today"/>

</BasicConcept>

<BasicConcept rdf:about="#Reservation">
<isA rdf:resource="&wn;reservation"/>

</BasicConcept>

<!-- Similarly we can define Basic
Concepts for #nights, #rooms,
#number, #persons, #name, etc. -->

</definitions>

A Book-Buying Service example is presented
in [15].

14

6 Theory of Substitution of Services

Next, we will investigate the theoretical aspects of USDL. This involves concepts from set theory.
From a systems integration perspective, an engineer is interested in finding (discovering) a service
that accomplishes some necessary task. Of course, such a service may not be present in any service
directory. In such a case the discovery software should return a set of services that can be used in a
context expecting a service that meets that description (of course, this set may be empty). To find
services that can be substituted for a given service that is not present in the directory, we need to
develop a theory of service substitutability. We develop such a theory in this section. Our theory
relates service substitutability to WordNet’s semantic relations.

In order to develop this theory, we must first formally define constructs such as USDL-described
concepts, affects, conditions and services, which we will also call concepts, affects, conditions and
services for short. While it is possible to work directly with the XML USDL syntax, doing so is
cumbersome and so we will instead opt for set theoretic notation.

Definition 1 (Set of WordNet Lexemes)

Let Ω be the set of WordNet lexemes. The following semantic relations exist on elements of Ω.
1. Synonym: A pair of WordNet Lexemes having the same or nearly the same meaning have

the synonym relation. Example, ‘purchase’ is a synonym of ‘buy’.
2. Antonym: A pair of WordNet Lexemes having the opposite meaning have the antonym

relation. Example, ‘start’ is an antonym of ‘end’.
3. Hyponym: A word that is more specific than a given word is called the subordinate or

hyponym of the other. Example, ‘car’ is a hyponym of ‘vehicle’.
4. Hypernym: A word that is more generic than a given word is called the super-ordinate or

hypernym of the other. Example, ‘vehicle’ is a hypernym of ‘car’.
5. Meronym: A word that names a part of a larger whole is a meronym of the whole. Example,

‘roof’ and ‘door’ are meronyms of ‘house’.
6. Holonym: A word that names the whole of which a given word is a part is a holonym of the

part. Example, ‘house’ is a holonym for ‘roof’ and ‘door’.

Definition 2 (Representation of USDL Concepts)

1. A Basic Concept c = x, where x is a WordNet lexeme, defines the values of isA property.
Example, customer is a Basic Concept and a WordNet lexeme.

2. A Qualified Concept c = (X,Y), where X,Y are USDL concepts, defines the values of isA and
ofKind properties. Example, concept FlightNumber is a number of kind flight represented as
(number, flight).

3. An Inverted Concept c is represented as ¬X where X is an USDL concept. Example, concept
not a customer name can be represented as ¬(name, customer).

4. Let X,Y be USDL Concepts.
(i) Conjunctive Concept c is represented as X ∧Y . Example, concept EvenRationalNumber

is represented as (number, even) ∧ (number, rational).
(ii) Disjunctive Concept c is represented asX∨Y . Example, concept OrderNumber/Availability-

Message is represented as (number, order) ∨ (message, availability).

Definition 3 (Universe of USDL Concepts)

15

Let Θ be the set of USDL concepts. Θ can be inductively constructed as follows:
1. x ∈ Ω implies x ∈ Θ
2. X,Y ∈ Θ implies (X,Y) ∈ Θ
3. X ∈ Θ implies ¬X ∈ Θ
4. X,Y ∈ Θ implies X ∨ Y ∈ Θ
5. X,Y ∈ Θ implies X ∧ Y ∈ Θ

Definition 4 (Semantic relations of Basic Concepts)

Semantic relations hold between two Basic concepts if their corresponding WordNet lexemes have
the same semantic relation in Ω. For example, Basic Concept Purchase is a synonym of Basic
Concept Buy.

Definition 5 (Synonym and Antonym relation of Qualified Concepts)

Let C1 and C2 are Qualified Concepts where C1=(X1, Y1), C2=(X2, Y2) and X1, X2, Y1, Y2 ∈ Θ.
1. C1 is synonym of C2 if X1 is recursively a synonym of X2 and Y1 is recursively a synonym of
Y2.

2. If X1 = w1 and X2 = w2 where w1, w2 ∈ Ω, then X1 is synonym of X2 if w1 and w2 have the
synonym relation in Ω.

For example, Qualified Concept (date, begin) is a synonym of Qualified Concept (date, start). Sim-
ilarly we can determine the antonym relation between Qualified Concepts. For example, Qualified
Concept (date, begin) is a antonym of Qualified Concept (date, end).

Definition 6 (Hyponym and Hypernym relation of Qualified Concepts)

Let C1 and C2 are Qualified Concepts where C1=(X1, Y1), C2=(X2, Y2) and X1, X2, Y1, Y2 ∈ Θ.
1. C1 is hypernym of C2 if any one of the following holds:

(i) X1 is recursively a hypernym of X2 and Y1 is recursively a hypernym of Y2.
(ii) X1 is recursively a hypernym of X2 and Y1 is recursively a synonym of Y2.
(iii) X1 is recursively a synonym of X2 and Y1 is recursively a hypernym of Y2.

2. If X1 = w1 and X2 = w2 where w1, w2 ∈ Ω, then X1 is hypernym of X2 if w1 and w2 have
the hypernym relation in Ω.

For example, Qualified Concept (number, vehicle) is a hypernym of Qualified Concept (number,
car). Similarly we can determine the hyponym relation of Qualified Concepts. For example,
Concept (number, car) is a hyponym of (number, vehicle).

Definition 7 (Holonym and Meronym relation of Qualified Concepts)

Let C1 and C2 are Qualified Concepts where C1=(X1, Y1), C2=(X2, Y2) and X1, X2, Y1, Y2 ∈ Θ.
1. C1 is meronym of C2 if any one of the following holds:

(i) X1 is recursively a meronym of X2 and Y1 is recursively a meronym of Y2.
(ii) X1 is recursively a meronym of X2 and Y1 is recursively a synonym of Y2.
(iii) X1 is recursively a synonym of X2 and Y1 is recursively a meronym of Y2.

2. If X1 = w1 and X2 = w2 where w1, w2 ∈ Ω, then X1 is meronym of X2 if w1 and w2 have
the meronym relation in Ω.

16

For example, Qualified Concept (door, brown) is a meronym of Qualified Concept (house, brown).
Similarly we can determine the holonym relation of Qualified Concepts. For example, Qualified
Concept (house, brown) is a holonym of Qualified Concept (door, brown).

Definition 8 (Semantic relations between Inverted Concepts)

Let C1 and C2 be two Inverted concepts where C1 = ¬X1 and C2 = ¬X2.
1. C1 is a synonym of C2 if X1 and X2 are synonyms.
2. C1 is an antonym of C2 if X1 and X2 are antonyms.
3. C1 is a hypernym of C2 if X1 and X2 are hyponyms and vice versa.
4. C1 is a meronym of C2 if X1 and X2 are holonyms and vice versa.

For example, Inverted Concept ¬(date, begin) is a synonym of Inverted Concept ¬(date, start).
The synonym-antonym relation, hyponym-hypernym relation and meronym-holonym relation can
be extended to Conjunctive and Disjunctive concepts.

Definition 9 (Semantic relations between Conjunctive (resp., Disjunctive) Concepts)

Let C1 and C2 be two Conjunctive (resp., Disjunctive) concepts where C1 = X1 ∧ Y1 and C2 =
X2 ∧ Y2.

1. C1 is a synonym of C2 if X1 is a synonym of X2 and Y1 is a synonym of Y2 OR X1 is a
synonym of Y2 and Y1 is a synonym of X2.

2. C1 is a hypernym of C2 if one of the following holds:
(i) X1 is a hypernym of X2 and Y1 is a hypernym/synonym of Y2

(ii) X1 is a hypernym/synonym of X2 and Y1 is a hypernym of Y2

(iii) X1 is a hypernym of Y2 and Y1 is a hypernym/synonym of X2.
(iv) X1 is a hypernym/synonym of Y2 and Y1 is a hypernym of X2.

For example, Conjunctive Concept (vehicle, blue) ∧ (vehicle, automatic) is a hypernym of (car, blue)
∧ (car, automatic). Similar to the above defined hypernym relation, we can define the antonym,
hyponym, meronym, and holonym relations between Conjunctive (resp., Disjunctive) Concepts.

Definition 10 (Substitution of Concepts)

1. Exact Substitution: For any concepts C,C ′ ∈ Θ, if C is a synonym of C ′, then C is
the exact substitutable of C ′ and C can safely be used in a context expecting concept C ′.
Example, concept Purchase is an exact substitutable of concept Buy.

2. Generic Substitution: For any concepts C,C ′ ∈ Θ, if C is a hypernym of C ′, then C is
the generic substitutable of C ′ and C can safely be used in a context expecting concept C ′

or a super-ordinate of C ′. Example, concept (number, vehicle) is a generic substitutable of
concept (number, car).

3. Specific Substitution: For any concepts C,C ′ ∈ Θ, if C is a hyponym of C ′, then C is the
specific substitutable of C ′ and C can safely be used in a context expecting concept C ′ or
a sub-ordinate of C ′. Example, concept (number, car) is a specific substitutable of concept
(number, vehicle).

4. Part Substitution: For any concepts C,C ′ ∈ Θ, if C is a meronym of C ′, then C is the part
substitutable of C ′ and C can safely be used in a context expecting a concept that is a part
of C ′. Example, concept Roof is a part substitutable of concept House.

17

5. Whole Substitution: For any concepts C,C ′ ∈ Θ, if C is a holonym of C ′, then C is the
whole substitutable of C ′ and C can safely be used in a context expecting a concept that is
a whole of C ′. Example, concept House is a whole substitutable of concept Roof.

Definition 11 (Representation of Affects)

Let Γ = {(L,E) | L ∈ (Ψ∪Θ), E ∈ Θ} be the set of USDL side-effects, where Ψ = {creates, updates,
deletes, finds}, L is the affect type and E is the affected object. The affect type could be one of
the pre-defined affects from Ψ or a generic effect which is described as a concept.

Definition 12 (Substitution of Affects)

USDL affect is represented as a pair where the first element is the affect type and second element
is the affected object. Both affect type and the affected object are described as USDL concepts.

Let A1 and A2 be two affects where A1 = (L1, E1) and A2 = (L2, E2). A1 can safely be used in
a context expecting affect A2 if all of the following hold:

1. Concept L1 is substitutable for L2

2. Concept E1 is substitutable for E2.
These substitutables can be of kind Exact, Generic, Specific, Part, or Whole which also determines
the kind of substitution of the affect A1 in a context expecting A2. Example, affect (finds, Ve-
hicleNumber) is a generic substitution of affect (lookup, CarNumber) as concept finds is an exact
substitutable of lookup and concept VehicleNumber is a generic substitutable of concept CarNum-
ber.

Definition 13 (Representation of Conditions)

Let Φ = {(P,Arg1, Arg2) | P, Arg1, Arg2 ∈ Θ} be the set of USDL conditions. P is the constraint
which is either a binary or a unary predicate. Arg1 is the concept on which the predicate acts and
Arg2 is the concept which represents a value. Arg2 is an optional parameter.

Definition 14 (Substitution of Conditions)

USDL condition is represented as a tuple made up of the constraint or predicate and two arguments.
The constraint and the arguments are described as USDL concepts.

Let C1 and C2 be two conditions where C1 = (P1, F irstArg1, SecondArg1) and C2 = (P2,
F irstArg2, SecondArg2). C1 can safely be used in a context expecting condition C2 if all of the
following hold:

1. Concept P1 is substitutable for P2

2. Concept FirstArg1 is substitutable for FirstArg2

3. Concept SecondArg1 is substitutable for SecondArg2.
These substitutables can be of kind Exact, Generic, Specific, Part, or Whole which also deter-
mines the kind of substitution of the condition C1 in a context expecting C2. Example, condi-
tion (greaterThan, NumberOfNights, 0) is an exact substitution of condition (moreThan, Num-
berOfNights, 0).

Definition 15 (Representation of a Web Service)

18

For any set S, let S∗ = {ε | ε /∈ S} ∪ {(x, y) | x ∈ S, y ∈ S∗} be the set of lists over S.
Let Σ be the set of USDL service descriptions represented in the form of terms. The USDL
description of a web service consists of

1. A list of Inputs, I ∈ Θ∗

2. A list of Outputs, O ∈ Θ∗

3. A list of Pre-Conditions, Pre-Condition ∈ Φ∗

4. A list of Post-Conditions, Post-Condition ∈ Φ∗

5. Side-effects, (affect-type, affected-object) ∈ Γ
USDL service description can be treated as a term of first-order logic [16]. The side-effect of

a service comprises of an affect type and the affected object. The service can be converted into a
triple as follows:

(Pre-Conditions, affect-type(affected-object, I, O), Post-Conditions).
The function symbol affect-type is the side-effect of the service and affected object is the object that
changed due to the side-effect. I is the list of inputs and O is the list of outputs. Pre-Conditions
are the conditions on the input parameters and Post-Conditions are the conditions on the output
parameters of the service.

We represent services as triples so that they can be treated as terms in first-order logic. The
first-order logic unification algorithm [16] then can be extended to specialized unifications for exact,
generic, specific, part and whole substitutions. This work is in progress [10].

Now that the formal definitions of concept, affects, conditions and service descriptions are
given, we would like to extend the theory of substitutability over Σ so that we can reason about
substitutability of services.

Definition 16 (Substitution of a Web Service)

Let σ and σ′ be two services where
σ is represented as (Pre-Condition, affect-type(affected-object, I, O), Post-Condition) and
σ′ is represented as (Pre-Condition′, affect-type′(affected-object′, I ′, O′), Post-Condition′).
σ can safely be used in a context expecting service σ′ if all of the following hold:

1. Pre-Condition is substitutable for Pre-Condition ′

2. If the terms affect-type(affected-object, I, O) and affect-type′(affected-object′, I ′, O′) can be
unified by applying an extended unification algorithm. The unification mechanism applied is
different based on the kind of substitution needed.

3. Post-Condition is substitutable for Post-Condition ′

Definition 17

For any services S1, S2 ∈ Σ, we say S1 � S2 if S1 is a substitutable of S2 based on one of the
WordNet semantic relations.

Thus far our notions of service substitutability are based on the six WordNet semantic relations
discussed earlier. However, one can define the notion of service substitutability independently
using the actual semantics (e.g., denotational semantics) of the program that realizes this service.
Consider a service S1 with inputs I1 and outputs O1, and another service S2 with inputs I2 and
outputs O2; we ignore the side-effects of these services for the moment. The ideal conditions
under which service S1 can be substituted for service S2 is the following: I1 v I2 and O1 w O2.

19

Essentially, the inputs needed by S1 must be present in the inputs being provided in anticipation
of availability of S2. Likewise, the outputs produced by service S1 should contain the outputs
anticipated from service S2. In such a case, S1 can be directly substituted for S2. There can be
other types of general substitution relation defined. However, for these other types of substitutions,
the code of the service being used for substitution may have to be modified or wrappers placed
around it.

One can, however, develop a more general notion of substitutability based on denotational
semantics [17]. Let [[S1]] and [[S2]] be the semantic denotations of programs that implement
services S1 and S2 respectively (note that the side-effects of these services will be captured as the
state that becomes an argument in a denotational definition). Note that [[S1]] and [[S2]] can be
regarded as points in a complete partial order [17] that represents the space of all functions. Service
S1 can be substituted for S2 if [[S1]] and [[S2]] lie in the same chain in the complete partial order
(i.e., either [[S1]] v [[S2]] or [[S2]] v [[S1]] where v is the relation that induces the complete partial
order among denotations of the services).

Given the definition of substitutability based on denotational semantics, one can prove the
soundness and completeness of our notion of substitutability based on the WordNet semantic rela-
tions, i.e.,
S1 � S2 ⇒ [[S1]] v [[S2]] (soundness)
[[S1]] v [[S2]] ⇒ S1 � S2 (completeness)

Intuitively, one can see that these relationships hold, since the � relation is defined in terms
of subsumption of terms describing the service’s inputs and outputs and its effect (create, update,
delete, find and the generic affects). These soundness and completeness proofs are not included
here due to lack of space.

7 Service Discovery

Now that our theory of service substitutability has been developed, it can be used to build tools
for automatically discovering services as well as for automatically composing them. It can also be
used to build a service search engine that discovers matching services and ranks them.

We assume that a directory of services has already been compiled, and that this directory
includes a USDL description document for each service. Inclusion of the USDL description, makes
service directly “semantically” searchable. However, we still need a query language to search this
directory, i.e., we need a language to frame the requirements on the service that an application
developer is seeking. USDL itself can be used as such a query language. A USDL description of
the desired service can be written, a query processor can then search the service directory to look
for a “matching” service.

A discovery engine gets USDL descriptions from a service directory and converts them into
terms of logic. The terms corresponding to the USDL query can be compared with the terms
from the directory using an extended/special unification algorithm. Depending on the type of
match required, the unification mechanism could be different. That is, the matching or unification
algorithm used can look for an exact, generic, specific, part or a whole match depending on the
desire of the user. Part and Whole substitutions are not useful while looking for matching services,
but are very useful while selecting services for service composition. Also using Part or Whole
substitutions for discovery may produce undesired side-effects.

20

The discovery engine can also rank the various services discovered. In this scenario, the dis-
covery engine returns a list of substitutable services after applying ranking based on the kind of
match obtained. Exact substitutables are assigned the highest rank among the different kind of
substitutables. The following is the default ranking order used for the different substitutions.

1. Exact Substitution: The matching service obtained is equivalent to the service in the query.
2. Generic Substitution: The matching service obtained subsumes the service in the query.
3. Specific Substitution: The matching service obtained is subsumed by the service in the query.
4. Whole Substitution: The matching service obtained is a composite service of the service in

the query and some other services.
5. Part Substitution: The matching service obtained is a part of a composite service that the

query describes.
The development of a service discovery engine based on these ideas is in progress.

With the USDL descriptions and query language in place, numerous applications become pos-
sible ranging from querying a database of services to rapid application development via automated
integration tools and even real-time service composition [12]. Take our flight reservation service
example. Assume that somebody wants to find a travel reservation service and that they query a
USDL database containing general purpose flight reservation services, bus reservation services, etc.
One could then form a USDL query consisting of a description of a travel reservation service and
the database could respond with a set of travel reservation services whether it be via flight, bus,
or some other means of travel. This flexibility of generalization and specialization is gained from
semantic information provided by USDL.

8 Service Composition

For service composition, the first step is finding the set of composable services. USDL itself can be
used to specify the requirements of the composed service that an application developer is seeking.
Using the discovery engine, individual services that make up the composed service can be selected.
Part substitution technique can be used to find the different parts of a whole task and the selected
services can be composed into one by applying the correct sequence of their execution. The correct
sequence of execution can be determined by the pre-conditions and post-conditions of the individual
services. That is, if a subservice S1 is composed with subservice S2, then the postconditions of S1

must imply the preconditions of S2.
In fact, the WordNet Universal ontology can also be helpful in automatically discovering services

that can be composed together to satisfy a service discovery query. To achieve this, the discov-
ery engine looks at the USDL concepts that describe the service in the query. It then searches
the WordNet ontology to find out the meronymous components of that concept. The services
that exactly match the meronymous components are then discovered using the standard discovery
mechanism. Preconditions and postcondition consistency is then used to find the order in which
the meronymous components should be stitched together to produce the desired service.

A service composition engine of this kind is under development. Such an engine can also aid a
systems integrator in rapidly creating composite services, i.e., services consisting of the composition
of already existing services. In fact, such an engine can also be extended to automatically gener-
ate boilerplate code to manage the composite service, as well as menial inter-service data format
conversions needed to glue the meronymous components together.

21

9 Comparison with OWL-S, WSDL-S, and WSML

In this section we present a comparison of USDL with other popular approaches such as OWL-S
[5], WSML [1], and WSDL-S [24]. Our goal is to identify the similarities and differences of USDL
with these approaches. OWL-S is a service description language which attempts to address the
problem of semantic description via a highly detailed service ontology. But OWL-S also allows for
complicated combining forms, which seem to defeat the tractability and practicality of OWL-S.
The focus in the design of OWL-S is to describe the structure of a service in terms of how it
combines other sub-services (if any used). The description of atomic services in OWL-S is left
under-specified [9]. OWL-S includes the tags presents to describe the service profile, and the tag
describedBy to describe the service model. The profile describes the (possibly conditional) states
that exist before and after the service is executed. The service model describes how the service is
(algorithmically) constructed from other simpler services. What the service actually accomplishes
has to be inferred from these two descriptions in OWL-S. Given that OWL-S uses complicated
combining forms, inferring the task that a service actually performs is, in general, undecidable. In
contrast, in USDL, what the service actually does is directly described (via the verb affects and its
refinements create, update, delete, and find).

OWL-S recommends that atomic services be defined using domain specific ontologies. Thus,
OWL-S needs users describing the services and users using the services to know, understand and
agree on domain specific ontologies in which the services are described. Hence, annotating services
with OWL-S is a very time consuming, cumbersome, and invasive process. The complicated nature
of OWL-S’s combining forms, especially conditions and control constructs, seems to allow for the
aforementioned semantic aliasing problem [9]. Other recent approaches such as WSMO, WSML,
WSDL-S, etc., suffer from the same limitation [1]. In contrast, USDL uses the universal WordNet
ontology to solve this problem.

Note that USDL and OWL-S can be used together. A USDL description can be placed under
the describedBy tag for atomic processes, while OWL-S can be used to compose atomic USDL
services. Thus, USDL along with WordNet can be treated as the universal ontology that can make
an OWL-S description complete. USDL documents can be used to describe the semantics of atomic
services that OWL-S assumes will be described by domain specific ontologies and pointed to by
the OWL-S describedBy tag. In this respect, USDL and OWL-S are complementary: USDL can be
treated as an extension to OWL-S which makes OWL-S description easy to write and semantically
more complete.

OWL-S can also be regarded as the composition language for USDL. If a new service can be
built by composing a few already existing services, then this new service can be described in OWL-S
using the USDL descriptions of the existing services. Next, this new service can be automatically
generated from its OWL-S description. The control constructs like Sequence and If-Then-Else of
OWL-S allows us to achieve this. Note once a composite service has been defined using OWL-S
that uses atomic services described in USDL, a new USDL description must be written for this
composite service (automatic generation of this description is currently being investigated [10]).
This USDL description is the formal documentation of the new composite service and will make it
automatically searchable once the new service is placed in the directory service. It also allows this
composite service to be treated as an atomic service by some other application.

For example, the aforementioned ReserveFlight service which creates a flight reservation can be
viewed as a composite process of first getting the flight details, then checking the flight availabil-

22

ity and then booking the flight (creating the reservation). If we have these three atomic services
namely GetFlightDetails, CheckFlightAvailability and BookFlight then we can create our Reserve-
Flight service by composing these three services in sequence using the OWL-S Sequence construct.
The following is the OWL-S description of the composed ReserveFlight service.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#">

<process:CompositeProcess rdf:ID="ReserveFlight">
<process:composedOf>
<process:Sequence>
<process:components rdf:parseType="Collection">
<process:AtomicProcess rdf:about="#GetFlightDetails"/>
<process:AtomicProcess rdf:about="#CheckFlightAvailability"/>
<process:AtomicProcess rdf:about="#BookFlight"/>
</process:components>

</process:Sequence>
</process:composedOf>

</process:CompositeProcess>
</rdf:RDF>

We can generate this composed ReserveFlight service automatically. The component services
can be discovered from existing services using their USDL descriptions. Once we have the compo-
nent services, the OWL-S description can be used to generate the new composed service.

10 Related Work

Discovery and composition of web services has been active area of research recently [18, 19, 20, 21,
22, 23]. Most of these approaches are based on capturing the formal semantics of the service using an
action description languages or some kind of logic (e.g., description logic). The service composition
problem is reduced to a planning problem where the sub-services constitute atomic actions and the
overall service desired is represented by the goal to be achieved using some combination of atomic
actions. A planner is then used to determine the combination of actions needed to reach the goal.
In contrast, we rely more on WordNet (which we use as a universal ontology) and the meronymous
relationships of WordNet lexemes to achieve automatic composition. The approaches proposed by
others also rely on a domain specific ontology (specified on OWL/DAML), and thus suffer from the
problem mentioned earlier, namely, to discover/compose such services the discovery/composition
engine has to be aware of the domain specific ontology. Thus, completely general discovery and
composition engines cannot be built. Additionally, the domain specific ontology has to be quite
extensive in that any relationship that can possibly exist between two terms in the ontology must be
included in the ontology. In contrast, in our approach, the complex relationships (USDL concepts)
that might be used to describe services or their inputs and outputs are part of USDL descriptions
and not the ontology. Note that our approach is quite general, and it will work for domain specific
ontologies as well, as long as the synonym, antonym, hyponym, hypernym, meronym, and holonym
relations are defined between the various terms of the domain specific ontology.

Another related area of research involves message conversation constraints, also known as be-
havioral signatures [13]. Behavior signature models do not stray far from the explicit description
of the lexical form of messages, they expect the messages to be lexically and semantically correct
prior to verification via model checking. Hence behavior signatures deal with low-level functional

23

implementation constraints, while USDL deals with higher-level real world concepts. However,
USDL and behavioral signatures can be regarded as complementary concepts when taken in the
context of real world service composition and both technologies are currently being used in the
development of a commercial services integration tool [12].

11 Conclusions and Future Work

To reliably catalogue, search and compose services in a semi-automatic to fully-automatic man-
ner we need standards to publish and document services. This requires language standards for
specifying not just the syntax, i.e., prototypes of service procedures and messages, but it also ne-
cessitates a standard formal, yet high-level means for specifying the semantics of service procedures
and messages. We have addressed these issues by defining a universal service-semantics description
language, its semantics, and we have proved some useful properties about this language. The cur-
rent version of USDL incorporates current standards in a way to further aid markup of IT services
by allowing constructs to be given meaning in terms of an OWL based WordNet ontology. This
approach is more practical and tractable than other approaches because description documents are
more easily created by humans and more easily processed by computers. USDL is currently being
used to formally describe web-services related to emergency response functions [11].

Our current and future work involves the application of USDL to formally describing commercial
service repositories (for example SAP Interface Repository and services listed in UDDI), as well
as to service discovery and rapid application development (RAD) in commercial environments
[12]. Current and future work also includes automatically generating USDL description from the
code/documentation of a service [12] as well developing tools that will allow automatic generation
of new services based on combining USDL descriptions of existing atomic services. The interesting
problem that arises then: can USDL description of such automatically generated services be also
automatically generated? This problem is also part of our current/future work.

References

[1] A conceptual comparison between WSMO and OWL-S. www.wsmo.org/TR/d4/d4.1/v0.1.

[2] Ontology-based information management system, wordnet OWL-Ontology. http://taurus.
unine.ch/knowler/wordnet.html.

[3] Resource Description Framework. http://www.w3.org/RDF.

[4] SAP Interface Repository. http://ifr.sap.com/catalog/query.asp.

[5] Semantic markup for web services. www.daml.org/services/owl-s/1.0/owl-s.html.

[6] Web Ontology Language Reference. http://www.w3.org/TR/owl-ref.

[7] Web Services Description Language. http://www.w3.org/TR/wsdl.

[8] WordNet: A Lexical Database for the English Language. www.cogsci.princeton.edu/~wn.

[9] S. Balzer, T. Liebig, and M. Wagner. Pitfalls of OWL-S - a practical semantic web use case.
In ICSOC, 2004.

[10] S. Kona, A. Bansal, G. Gupta, and T. Hite. Automatic Service Discovery and Composition
with USDL. Working paper, 2006.

24

[11] A. Bansal, K. Patel, G. Gupta, B. Raghavachari, E. D. Harris, and J. C. Staves. Towards
Intelligent Services: A case study in chemical emergency response. In International Conference
on Web Services, pp. 751-758, 2005.

[12] T. Hite. Service Composition and Ranking: A strategic overview. Internal Report, Metallect
Inc., 2005.

[13] R. Hull and J. Su. Tools for design of composite web services. In SIGMOD, 2004.

[14] L. Simon, A. Bansal, A. Mallya, S. Kona, G. Gupta, and T. Hite. Towards a Universal Service
Description Language. In Next Generation Web Services Practices, pp. 175-180, 2005.

[15] A. Bansal, S. Kona, L. Simon, A. Mallya, G. Gupta, and T. Hite. A Universal Service-
Semantics Description Language. In European Conference On Web Services, pp. 214-225,
2005.

[16] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[17] D. Schmidt. Denotational Semantics: A Methodology for Language Development. 1986.

[18] B. Srivastava, J. Koehler. Web Services Composition - Current Solutions and Open Problems.
In ICAPS, 2003.

[19] S. McIlraith, T.C. Son, H. Zeng. Semantic Web Services. In IEEE Intelligent Systems Vol. 16,
Issue 2, pp. 46-53, Mar. 2001.

[20] S. McIlraith, T.C. Son Adapting golog for composition of semantic web services. In KRR,
pages 482–493, 2002.

[21] S. McIlraith, S. Narayanan Simulation, verification and automated composition of web services.
In World Wide Web Conference, 2002.

[22] G. Picinielli, et al. Web service interfaces for inter-orgranizational business processes - an
infrastructure for automated reconciliation. In EDOC, pages 285-292, 2002.

[23] B. Srivastava. Automatic Web Services Composition using planning. In KBCS, pages 467–477.

[24] Web Service Semantics - WSDL-S http://www.w3.org/Submission/WSDL-S.

25

