
Copyright 200- The MITRE Corporation. All rights reserved.

Harmonizing Semantic Web Services and Mashups
Using WMSL

Marwan Sabbouh, The MITRE Corporation. 202 Burlington Road, Bedford, MA 01730
781-271-2964 (fax) ms@mitre.org

Jeff Higginson, The MITRE Corporation, Salim Semy, The MITRE Corporation, Caleb Wan, The MITRE
Corporation, Danny Gagne, The MITRE Corporation

 Abstract – This paper harmonizes semantic web services and mashups by leveraging semantics in
Schemas, and by generating aligned ontologies from mappings between schemas. Hence, we propose to
encode the import of schemas and their mappings in HTML, which when combined with JavaScript
libraries enable a web user to write mashups while hiding coding complexities and promoting reuse of
schemas. These Web pages yield a Web of structured data similar to the web of unstructured text of
today.
Keywords: Semantic Web Services, Mashups, Ontologies, Mapping Relations

1.0 Introduction
Despite many advances in Semantic Web technologies, such as the development of
multiple standards (RDF [18] /OWL [27]) to define semantics, we have not observed the
widespread adoption of these technologies that was once anticipated. We believe there
are a number of reasons for the lack of adoption of Semantic Web technologies:

• There is no common position in the Semantic Web community on how to
adopt semantics. While some argue for domain ontologies that use mid-level
and upper ontologies [7], others insist one define local semantics mapped to
context ontologies [20].

• The Semantic Web community believes XML schemas do not provide a
means to specify semantics and XML schemas are not a suitable starting
point to capturing semantics. Hence, semantic standards, such as RDF and
OWL, do not reuse schema primitives. While there is recent work to annotate
[1] XML schemas with semantics, the process still requires the existence of
well-defined ontologies.

• While ontologies formalize semantics for automated reasoning, data
integration, and composition of web services, it’s at the cost of introducing
heavyweight infrastructure and exposing complexities to the user. That is,
these techniques require the users to manually define ontologies.

• There are multiple competing approaches for achieving Semantic Web
Services [11], e.g. OWL-S [17], WebML [26], WSDL-S [1] and WSMO [29].

Hence, Semantic Web promises remain years away from the widespread adoption.

In comparison, Web 2.0 technologies enjoy substantial momentum and support from
Web communities because they facilitate web user participation and employ existing
common standards and technologies. In contrast to the Semantic Web, the infrastructure
for Web 2.0 is lightweight as the technologies are formed from existing standards and
technologies. For example, Ajax uses a combination of client-side scripting,
asynchronous HTTPRequest, HTML, and CSS, to enable Mashups for data integration of
web services though active web user participation. Nonetheless, Web 2.0 also suffers
from various limitations. For instance:

• Ajax libraries are complex and they result in mashups that have complex
code.

• Mashups, such as those created by Yahoo Pipes [31], do not expose well
defined data models, which makes them difficult to integrate with web services

Copyright 200- The MITRE Corporation. All rights reserved.

or mashups created by other service providers.

In this paper, we propose the Web Mashup Scripting Language (WMSL) as an effective
means to enable the Mashup of web services while specifying data semantics. WMSL is
simply a web page with embedded metadata in the form of mapping relations [4, 15],
imports of schemas, and scripting to achieve the mashing up of services. The existence
of the mapping relations permits the creation of JavaScript [8] libraries that abstract the
invocation of web services, the handling of their returned documents, and mediation
between web services. Thus, WMSL utilizes existing standards and technologies,
emphasizes the role of mapping relations and scripting, and encourages user
participation to capture formal semantics. With each Mashup having a corresponding
WMSL, it also enables integration of multiple Mashups via imports of and associations
across WMSL files. Finally, WMSL can be processed by a user agent to generate
aligned ontologies [16].

The remainder of this paper proceeds as follows: in the next section, we present a simple
model to highlight the steps involved in creating a typical Semantic Web Service solution.
In section 3, we use the same model to capture the steps involved in creating a Mashup.
In section 4 and 5, we summarize the Web Mashup Scripting Language and conclude the
paper.

2.0 Semantic Web Services
The composition of web services [12,13] is achieved by creating a third web service
(hereafter referred to as the integrating web service) and its Web Service Description
Language (WSDL) [28] file. This web service invokes the source legacy web service to
retrieve data, mediates to resolve any mismatches the data has with the destination web
service, typically though invocation of context [9, 10] services, and then passes the
converted data to this destination web service. This integration model is illustrated in Fig.
1.

New WSDL

WSDL WSDL

WSDL

Mashup or
Integrating Web

Service

Legacy
Web

Service

Legacy
Web

Service

Context
Web

Service

New WSDLNew WSDL

WSDLWSDL WSDLWSDL

WSDLWSDL

Mashup or
Integrating Web

Service

Mashup or
Integrating Web

Service

Legacy
Web

Service

Legacy
Web

Service

Legacy
Web

Service

Legacy
Web

Service

Context
Web

Service

Context
Web

Service

Figure 1. Model for Integrating Web Services

Fig. 1 shows the integration of two legacy web services through the use of a third
integrating service. Typically, the integrating service’s WSDL file is very similar to the
destination service’s WSDL with the addition of (few) entities from the source’s and
context’s WSDL files.

Copyright 200- The MITRE Corporation. All rights reserved.

The typical SWS approach [20, 5] presented here accomplishes the automatic
composition of web services by representing the web services ontologically. Typically, a
web service has the following ontological components:

1. Description of web services as an OWL-S upper ontology [17]
2. Representation of WSDL ontologically [20]
3. Shared ontologies describing the domain or the context of the data being

exchanged
4. Mappings between WSDL ontologies and the shared ontologies to annotate

WSDL files [1]
5. Ontology of mapping relations to map the WSDL ontologies to the shared

ontologies and the shared ontologies to the OWL-S upper ontologies

These ontology components and the relationships among them are illustrated in Fig. 2.

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF Mappings

OWL/RDF Mappings
to Annotate WSDL

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF Mappings

OWL/RDF Mappings
to Annotate WSDL

Figure 2. Ontological Representation of Web Services

There are two types of mappings, as depicted in Fig. 2, needed to represent a Web
service ontologically. The first is used to map a WSDL ontology [20] to the shared
ontology, for example annotating a WSDL file with concepts from a shared ontology.
The second set of mappings is needed to integrate a Web service into a shared ontology.
These mappings are accomplished by creating links, or mapping primitives, between two
ontologies.
Once ontologies are created describing each web service, one can achieve their
integration by mapping concepts of each ontology to each other and to context ontologies
[5]. Fig. 3 presents an ontological model corresponding to the model shown in Fig. 1.

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF Mappings

OWL/RDF Mappings
to Annotate WSDL

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF Mappings

OWL/RDF Mappings
to Annotate WSDL

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF
Mappings

OWL/RDF Mappings
to Annotate WSDL

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF Mappings

OWL/RDF Mappings
to Annotate WSDL

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF Mappings

OWL/RDF Mappings
to Annotate WSDL

WS Upper Ontology

Local Semantics or
Shared Ontology

WSDL Ontology

OWL/RDF
Mappings

OWL/RDF Mappings
to Annotate WSDL

Copyright 200- The MITRE Corporation. All rights reserved.

Figure 3. Ontological Mapping of Shared Ontologies

The mappings illustrated in Figs. 2 and 3 are important in representing both web
services ontologically and to reconcile syntactic, structural, and representation
mismatches between the legacy web services. There are some interesting properties
to highlight about the mappings. First, the mappings relate entities between
ontologies. Second, the mapping of entities results in the duplication of entities from
one ontology to the other. Third, entities with representational mismatches, e.g Inches
to cm, are not only mapped pair-wise, but are also mapped to a Context [9, 10] that
reconciles representational mismatches. The duplication of entities is illustrated in Fig.
4.

Y2 Y1

Legacy Service Legacy Service

Context Service

X1 X2

Y3X3

Z3 W3

Legacy Service

X1 X2

X3

Y1

Legacy Service

Y3

Y2 Y1

Legacy Service Legacy Service

Context Service

X1 X2

Y3X3

Z3 W3

Y2 Y1

Legacy Service Legacy Service

Context Service

X1 X2

Y3X3X3

Z3Z3 W3W3

Legacy Service

X1 X2

X3

Y1

Legacy Service

Y3

Legacy Service

X1 X2

X3X3

Y1

Legacy Service

Y3

Figure 4. Mapping Properties

Fig. 4 shows the X2 attribute from the source service is duplicated as Y2 in the
destination service. It also shows attributes X3, and Y3 being mapped to a context
service.

Once the mappings are done, reasoning over the mapped ontologies results in code
generation [5]. In addition, we postulate the WSDL file associated with the integrating
service can also be generated from the mapped ontologies. Work is in progress to
validate this hypothesis.

To invoke web services automatically, we have to reason over the mappings between the
WSDL ontology and the shared ontologies. To handle the return documents of invoked
services, we reason between the WSDL ontologies and one or more shared ontologies.
To reconcile structural, syntactic, and representational differences, we reason over the
mappings between the shared ontology of legacy services and context services.

It turns out the key to reasoning algorithms are graph traversal techniques which make
use of simple inferences and rely on the following mapping primitives and relationships
[20, 5]:

• A primitive to define generic relationships to implement the duplication of
entities are required by the mapping technique

• Two specialized relationships, i.e. has-Match and has-Context, to implement
the mapping of entities with representational mismatches

• The inferences include: subclassOf, memberOf, sameAs, equivilantClass,
inverseOf, and transitivity relations

A key property of the graph traversal technique is the ability to exclude a relation’s
name from the graph traversal [20]. For example, one can say “navigate the graph
from concept this thing to concept another thing, excluding relationship hasMatch”.

Copyright 200- The MITRE Corporation. All rights reserved.

Another point to note is that the name of the property between concepts in an ontology
never enter into the reasoning process. In fact, the property name is only important
when traversing between ontologies, or when the relationship is one of the mapping
primitives, e.g. sameAs, equivalentClass

2.1 Discussion of Semantic Web Services Approach
It’s clear that the SWS approach imposes new requirements and complexities on the
development process to automate integration. These requirements are shown in Fig.
5.

Aligned Ontologies

Legacy Service Context Services/
Mediation Legacy Service

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

Automatic Generation of
Integration Code, WSDL

Action 2: User annotates WSDL with ontologies created in Action 1

Action 1: User creates local
semantics or shared ontology

Action 3: User maps OWL-S Upper
ontology to shared ontology

Action 4: User maps the legacy and context services
shared ontologies to each other

Aligned Ontologies

Legacy Service Context Services/
Mediation Legacy Service

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

WS Upper Ontology

Local Semantics or Shared
Ontology

WSDL Ontology

Automatic Generation of
Integration Code, WSDL
Automatic Generation of
Integration Code, WSDL

Action 2: User annotates WSDL with ontologies created in Action 1

Action 1: User creates local
semantics or shared ontology

Action 3: User maps OWL-S Upper
ontology to shared ontology

Action 4: User maps the legacy and context services
shared ontologies to each other
Action 4: User maps the legacy and context services
shared ontologies to each other

Figure 5. Requirements on Web Users for Adopting a Typical SWS Solution

At the center of this approach are ontological components. Many of the ontological
components described above, illustrated in Fig. 5, require users to manually design
ontologies, while others can be generated automatically. For instance, the WSDL
ontology, (dimmed in Fig. 5), is generated automatically from WSDL files. The web
service upper ontology, while designed manually for one web service, it may be reused
for all other web services. In contrast, the shared ontology must be manually
implemented as are the mappings between shared ontologies. These ontologies and
mappings are dependent on particular web service domains.

In designing ontologies, there is lack of clarity, from a user perspective, on what defines a
good ontology and the requirements placed on the ontology by the SWS approach. The
typical SWS approach presented in this paper suggests that the design of the shared
ontologies is not arbitrary. Rather, the mapping techniques used impose a methodology
on the design of the shared ontologies. First and foremost, in order to annotate WSDL
files with the shared ontology, all entities from the WSDL must be duplicated in the
shared ontology. This is a direct consequence of the fact that the mapping technique
results in duplication of entities. Therefore a subset of the shared ontology must
correspond to the entities present in the WSDL file. Furthermore, the mappings between
shared ontologies require data type information, such as instances or individuals of
aircraft types, vehicle types, etc. These types must be explicitly specified in each of the
ontologies. Finally, the mapping of ontologies is clearly facilitated by concepts that are
ubiquitous in a large number of domains, such as geospatial information.

The formalism of choice to design the ontological components has been OWL and RDF.
The use of OWL and RDF has primarily been based on the assumption that particular
inferences are needed to accomplish the automated composition of web services and
OWL and RDF provide these primitives and mappings to perform the inference.

Copyright 200- The MITRE Corporation. All rights reserved.

However, as indicated above, the key to reasoning are graph traversal algorithms based
on simple inferences.

3.0 Web 2.0
Web 2.0 technologies enjoy substantial momentum and support from Web communities
because they facilitate user participation and employ existing common standards and
technologies. Web 2.0 is all about empowering the user, turning the web into a
programmable environment where application programmatic interfaces and a minimal
learning curve allow users to contribute information as well as exploit existing information
in previously unimagined ways.

Mashups are a great example of Web 2.0 technologies. Mashups support integration
and derivation of hybrid application by third parties, enabling novel forms or reuse. While
original Mashups were limited in their scope, i.e. pair wise combinations with output
typically being another website and the need for programming experience, emerging
capabilities such as Yahoo Pipes are breaking this barrier. Yahoo Pipes generalizes
mashups by providing a drag and drop graphical user interface to allow users to connect
heterogeneous data sources, process them, and redirect the output to one of multiple
applications. Mashups are emerging as a new paradigm for lightweight data integration.

While the impact of Web 2.0 technologies such as Mashups is profound, current
implementations suffer from various limitations. The openness of web data sources and
Mashups is limited to providing application programming interfaces (API) for developers
to program against, falling short of enabling integration and reuse of data. Mashups,
such as those created by Yahoo pipes, do not inherently expose well defined data
models. Instead, the data models are hidden within application code, making reusability
and extensibility difficult. While it is possible to develop data models associated with
Mashups, the process of doing so is independent of the process to develop the Mashup
and thus is duplicative.

A consequence of no associated data models is that Mashups created within a particular
service provider environment, such as Yahoo Pipes, do not support integration of the
resulting Mashup with other web services. The lack of exposed data models limits reuse
of the Mashup to the person who initially developed the Mashup and has access to the
application code. A third party that wishes to either extend, reuse, or compose existing
Mashups does not have sufficient information, i.e. data models of the Mashups, to do
this. Furthermore, the lack of standards to expose Mashup metadata does not support
interoperability across Mashup service providers.

4.0 Harmonizing Semantic Web Services with Mashups: Web Mashup
Scripting Language

The Web Mashup Scripting Language (WMSL) aims to harmonize the Semantic Web
Services and mashups, while addressing the issues identified in the discussion on each
approach above. First, we derive conclusions based on the key findings from the
Semantic Web Service discussion. Then, we propose WMSL that implements these
conclusions. Finally, we show that WMSL can benefit both the Semantic Web Services
and Mashup communities.

The key findings from the Semantic Web Services discussion can be summarized as:

1. The annotation of XML schemas with shared ontologies result in the
duplication or migration of entities between XML schemas and the shared
ontology

2. The reasoning over mapped ontologies to automatically compose web services

Copyright 200- The MITRE Corporation. All rights reserved.

requires only graph traversal algorithms which make use of a defined set of
mapping primitives and simple inferences

3. The relationship name within an ontology does not play a factor in the
reasoning to automate composition of web services

4. Context services and specifying type information play a critical role in enabling
mappings between schemas

The above findings furthermore lead us to the following conclusions:

1. The first finding above highlights a need to reuse existing entities found in XML
schemas in the design of shared ontologies. Furthermore, one can also
leverage the schema primitives, such cardinality constraints and class
definitions in building shared ontologies. Hence, there is a need to map XML
schema's primitives to OWL/RDF primitives [22].

2. The second finding above suggests that the sets of mapping relations are
sufficient to achieve the automation described above.

3. The third finding suggests that the mapping relations can operate directly on
XML schemas. This is significant since without a need for the shared
ontology, the ontology of mapping relations of figure 2 are no longer needed.
Hence, there is a need only for the set of mapping relations between legacy
and context services. Furthermore, this implies that ontologies can be hidden
from the user, as aligned ontologies can be automatically generated from the
XML schemas and the mapping relations.

4. The fourth finding suggests that a well defined schema is useful irrespective of
the formalism used.

The above conclusions lead to a new approach of composing web services. This
approach is referred to as the Web Mashup Scripting Language.

The Web Mashup Scripting Language (WMSL) [21] enables a web-user (“you”) working
from his browser, e.g. not needing any other infrastructure, to quickly write mashups that
integrate any two, or more, web services on the Web. The end-user accomplishes this
by writing a web page that combines HTML, metadata in the form of mapping relations,
and small piece of code, or script. In general the WMSL script contains four types of
blocks [22]:

1. Imports of Web Service Description Language (WSDL) files [28], schemas,
ontologies, and other WMSL scripts

2. Alignments of entities and concepts
3. Workflow statements
4. Mediation statement

First, the WMSL imports the WSDL files or the schemas of legacy and context web
services. Then, the WMSL uses six mapping relations to align entities between the
schemas. Not coincidentally, these are the same mapping relations that are used in our
previous work [5, 20], with the exception that they are defined outside the ontologies.
The mapping relations are:

owl::equivalentClass owl::sameAs rdfs::subclassOf
hasMatch hasContext hasRelation

The first three relations are used in accordance with the specifications that they were
taken from. The hasMatch, and hasContext relations are needed in order to resolve
structural, syntactic, and representational mismatches between the legacy schemas. The
hasRelation establishes a generic relationship between a subject and an object. The
scripting statements that a Web-user writes are high level workflow statements, in

Copyright 200- The MITRE Corporation. All rights reserved.

addition to any custom coding that may be required. Note that these relations are not only
used to match entities existing in XML schemas, but also they can be used to assert new
entities that are not found in legacy XML schemas. The paper titled, WMSL-Profile [22],
specifies the HTML encoding that is used to import WSDL files and the mapping
relations, into a WMSL web page. Furthermore, the WMSL-Profile describes the
conventions used to parse the WMSL pages by a WMSL user-agent. Currently we are in
the process of defining the JavaScript object types needed and the application
programming interface (API) in support of the workflow and mediation statements.

4.1 Benefits of WMSL

Web users accomplish the composition of web services by writing WMSL web pages.
User agents crawl these web pages to generate aligned ontologies. This process is
depicted in Fig. 6.

WMSL Implements Workflow

WMSL

<html>
Imports of schemas

<script>
entities mappings

or metadata
<Javascript>

Workflow
Mediation

OWL\RDF

Aligned Ontologies

JavaScript Libraries
that Abstract Coding

Complexities

Scripting

Automatic Generation of WSDL
and Aligned Ontologies;
Abstraction of coding complexities
using JavaScript libraries

Legacy Service Context Services/
Mediation Legacy Service

WMSL Implements Workflow

WMSL

<html>
Imports of schemas

<script>
entities mappings

or metadata
<Javascript>

Workflow
Mediation

OWL\RDF

Aligned Ontologies

JavaScript Libraries
that Abstract Coding

Complexities

Scripting

Automatic Generation of WSDL
and Aligned Ontologies;
Abstraction of coding complexities
using JavaScript libraries

Legacy Service Context Services/
Mediation Legacy Service

Figure 6. WMSL Model of Adoption

Fig. 6 demonstrates that the starting point for defining semantics is XML schemas, while
ontologies result from the XML schemas and the WMSL. Therefore, the ontological
complexities are hidden from Web users. Furthermore WMSL claims the following
advantages:

• Since aligned ontologies are generated from WMSL web pages, it follows that
WMSL enables an open-source/collaborative model of building aligned
ontologies.

• Since we have shown that integration code can be automatically generated
from aligned ontologies, we conclude that WMSL abstracts the mediation
coding complexities from the scriptwriter. In addition to mediation, WMSL
automates argument passing, web services invocation, and the handling of
returned response of invoked services. We also suggest that WMSL can
contribute to the state of the art in scripting by providing APIs for high-level
workflows that introduce mediation and context object types to scripting
paradigms.

• Since WMSL web pages can import other WMSL pages, we conclude that
WMSL enables reuse of mashups created by different hosting providers.

• Since WMSL can import ontologies and XML schemas, this positions WMSL
as the glue between different schema formalisms.

Copyright 200- The MITRE Corporation. All rights reserved.

• Furthermore, assuming that WSDL files can be generated from aligned
ontologies, we conclude that the WSDL of the mashups can be automatically
generated from the WMSL web page.

5.0 Conclusion

WMSL has significant consequences on today’s W3C standards.

• WMSL uses XML schemas as a starting point for specifying semantics
In particular, the relationship between the XML schema standard and the RDF/OWL
standards needs to be revisited. XML schemas must be the starting point for
specifying semantics which can be captured in ontologies by user agents. This can
happen through a standardization that maps the XML schema primitives to that of the
RDF/OWL primitives.

• WMSL reassesses the role of SAWSDL
Given that XML schema is the starting point for ontology development, then
annotation between WSDL files and ontologies makes sense if ontologies are
available to Web users. In the absence of such ontologies there is no need for
annotation.

• WMSL standardizes on a minimal set of mapping relations in HTML/XHTML
for augmenting the semantics found in XML schemas

We also call for the standardization of the minimal set of mapping relations that
accomplish the composition of Web services. We favor a standard for encoding the
mapping relations in HTML or XHTML, as HTML can be combined with scripting to
run either on Web servers, or in browsers. Today, techniques to embed semantics in
HTML are emerging, but with a different purpose than WMSL. For example, the
hcard Microformat [14] is used to embed contact information in HTML pages. Another
key distinction between the approach presented here and the Microformats is that
WMSL builds on schemas, and not text pages. RDFa [19], eRDF serves to embed
metadata such as those defined by the Dublin Core [30], in HTML. These
approaches result in the generation of RDF, and not aligned ontologies. GRDDL [6]
provides means to generate RDF from instance data which can then be queried
using SPARQL [23]. However, GRDDL, as it is, does not define the mappings that
we need between XML schema’s primitives and those of RDF\OWL, and makes use
of XSLT. Furthermore, note that the mapping relations in WMSL implement the
mapping properties discussed above.

• WMSL promotes crosswalks between schemas
The embedding of the mapping relations in HTML, serves to promote crosswalks for
the purpose of building aligned ontologies. This is a key differentiator from the
tagging phenomenon that is so relevant in Folksonomies. That is, crosswalks may
prove as significant to the structured data sources, as tags are to resources.

• WMSL creates a web of mashups
In contrast to the islands of mashups that are emerging today, the proposed
approach gives birth to a web of structured data, or a web of mashups, effectively
addressing the deep Web [3] problem. That is, the boundaries that exist today
between mashups created by different hosting providers disappear with WMSL
adoption.

• WMSL is Scalable
Finally, we postulate that this approach is scalable, since WMSL Web pages are

Copyright 200- The MITRE Corporation. All rights reserved.

HTML and scripting. That is, from a global network topology prospective, we
postulate that the emergent topology of the web of Mashup is similar to the topology
of the current web [2]; a complex network [24] with small world properties [25]. Note
that we aren’t concerned that the scripting would affect scalability, since the import of
WMSL pages can exclude scripting if needed.

6.0 Acknowledgments

This paper is the result of several years of work on the semantic web. We would like to
thank Dave Lehman who, as CTO of MITRE, aggressively funded this area of research,
and whose encouragements and support are invaluable to us in our daily engagements
with our stakeholders. We are also grateful to Mr. Bert Hopkins for sponsoring our work
throughout the years. Additionally we would like to thank those who supported, engaged,
and collaborated with us the past few years, and whose contributions shaped this work.

7.0 References

[1] R. Akkiraju, J. Farell, J.A. Miller, M. Nagarajan, A. Sheth, and K. Verma, (2005) Web Service
Semantics - WSDL-S, http://www.w3.org/2005/04/FSWS/Submissions/17/WSDL-S.htm

[2] A. Barabasi, Statistical Mechanics of Complex Networks. Rev Mod Phys 2002, 74, 47-97

[3] M. Bergman, The Deep Web: Surfacing Hidden Value, The Journal of Electronic Publishing,
http://www.press.umich.edu/jep/07-01/bergman.html

[4] M. Crubezy, Z. Pincus, and M.A. Musen, (2003). “Mediating knowledge between application
components”, Semantic Integration Workshop of the Second International Semantic Web
Conference (ISWC-03), Sanibel Island, Florida, CEUR, 82.

[5] D. Gagne, M. Sabbouh, S. Bennett, S. Powers, Using Data Semantics to Enable Automatic
Composition of Web Services. IEEE International Conference on Services Computing (SCC 06),
Chicago USA. (Please see the extended version at:http://tinyurl.com/28svgr)

[6] GRDDL, Gleaning Resource Descriptions from Dialects of Languages,
http://www.w3.org/TR/grddl/

[7] T.R. Gruber, (1993). “A translation approach to portable ontologies”, J on Knowledge
Acquisition, Vol 5(2), p199-220

[8] JavaScript (ECMA Script), http://www.ecma-international.org/publications/standards/Ecma-
262.htm

[9] J. McCarthy, (1987),GENERALITY IN ARTIFICIAL INTELLIGENCE, Communications of
the ACM, 30(12):1030-1035

[10] J. McCarthy, (1993), Notes on Formalizing Context., In Proceeding of The Thirteenth
International Joint Conference on Artificial intelligence, Pages 555-560, Chambery

[11] S. McIlraith, T. Son, H. Zeng, Semantic Web services. In IEEE Intelligent Systems (Special Issue on
the Semantic Web), March/April 2001.

[12] B. Medjahed, and A. Bouguettaya, (2005) A Multilevel Composability Model for Semantic
Web Services. IEEE Transactions on Knowledge and Data Engineering (TKDE)

[13] B. Medjahed, and A. Bouguettaya, (2005) A Dynamic Foundational Architecture for

Copyright 200- The MITRE Corporation. All rights reserved.

Semantic Web Services. Distributed and Parallel Databases (DAPD), 17(2)

[14] Microformats, http://microformats.org/

[15] P. Mitra, G. Wiederhold, and M. Kersten, (2000). A Graph-Oriented Model for Articulation
of Ontology Interdependencies"; Extending DataBase Technologies, EDBT 2000, Konstanz,
Germany

[16] N. Noy, and A. Musen, (2000). PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In 17th National conference on Artificial intelligence. Austin, Texas

[17] OWL-S (2004). Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S

[18] Resource Description Framework (RDF). (2006). World Wide Web Consortium,
http://www.w3.org/rdf/

[19] RDFa Primer 1.0, available at: http://www.w3.org/TR/xhtml-rdfa-primer/

[20] M. Sabbouh, J. Derosa, S. Powers, and S. Bennett, Using Semantic Web Technologies to
Enable Interoperability of Disparate Information Systems, MTR:
http://www.mitre.org/work/tech_papers/tech_papers_05/05_1025/

[21] M.Sabbouh, J. Higginson, S. Semy, D. Gagne, Web Mashup Scripting Language, Poster,
WWW2007, Banff, Canada

[22] M. Sabbouh, J. Higginson, C. Wan, S. Semy, D. Gagne, The Web Mashup Scripting
Language Profile, Proceedings of the European Semantic Web Conference, Workshop on
Scripting the Semantic Web, Innsbruck 2007

[23] SPARQL, http://www.w3.org/TR/rdf-sparql-query/

[24] S. H. Strogatz. Exploring complex networks. Nature 410: 268-276 (2001)

[25] D. J. Watts, and S.H Strogatz, Collective Dynamics of Small World Networks, Nature 1998,
393, 440-442

[26] WEBML, Flexible Specification of Semantic Services using Web Engineering Methods and
Tools, In Proceedings of the SWESE 2006, ISWC 2006, Athens, GA, USA, November 2006.

[27] Web Ontology Language (OWL), World Wide Web Consortium,
http://www.w3.org/2004/OWL

[28] Web Service Description Language (WSDL) 1.1. (2006).
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[29] Web Service Modeling Ontology (WSMO) (2005). http://www.w3.org/Submission/WSMO/

[30] S. Weibel, T. Koch, The Dublin Core Metadata Initiative, D-Lib Magazine, 2000

[31] Yahoo Pipes, http://pipes.yahoo.com/pipes/

