The Essence of Net-Centricity
A System Implementer’s Perspective
This “mini” white paper is intended to clarify what is meant by net-centric in Department of Defense Chief Information Officer (DoD CIO) Focus Area #1. The intent is to have this paper serve as a frame of reference for all responses from Association for Enterprise Integration (AFEI) Working Groups.

Technical Point of Contact: Hans Polzer, Lockheed Martin Corp., AFEI Data Sharing and Services Strategy Working Group (DS3WG).

hans.w.polzer@lmco.com
(703) 293-4587
Focus Area #1, provided by the DoD CIO’s office, is stated as follows:
“The goal of the DoD is to promote an SOA development that is also net-centric. Describe the characteristics of an architecture that is both net-centric and service oriented, and map that to existing/new DoD Architecture Framework (DODAF) products.”

This paper will not attempt to address the second part of this task statement, the mapping to the DoD Architecture Framework (DoDAF), as this an ongoing activity being addressed by the DoDAF 2.0 Working Group. However, the conceptual model underlying the words net-centric and service oriented architecture (SOA) pervades most, if not all, of the other task statements being address by the AFEI Working Groups. A common understanding of this conceptual model will facilitate consistency among all the working group responses.

Much has been written on the topic of net-centricity and many documents provide formal guidance on this subject from a DoD perspective. For example, the DoD Command and Control Research Program (CCRP)
 published a number of noteworthy books on net-centric operations, including the seminal works Network Centric Warfare and Power to the Edge. The intent of this paper is not to review or summarize this material, but to develop a concise description of what it means for systems to be net-centric and how this is differentiated from and enabled by service orientation. As implied by the Focus Area #1 task statement, net-centricity and service orientation are related but distinct concepts. The following sections focus on the key differentiating aspects of both conceptual models; the sections are not intended as detailed expositions of either concept.

Net-Centricity

One could argue that the military and commercial enterprises have always been net-centric. History books are replete with examples of military operations that succeeded because of effective use of military forces through knowledge of enemy force disposition and intentions and good communications with, and awareness of, the friendly force situation. Likewise, many commercial enterprises have succeeded because of effective communications with, and knowledge of, their supply chain and their customer markets. These efforts both drove and were enabled by advances in communications technology and associated infrastructure services. In more recent times with the advent of the Internet and the World Wide Web, as well as wide-spread adoption of information technology within military and commercial operations, this trend has continued.

So if this is really “business as usual”, why all the fuss about the term “net-centric”? There are two key new aspects to this issue. One key aspect is that, thanks to open network and service invocation protocols, information systems now have the ability to communicate routinely across traditional system and enterprise boundaries in an open-ended or “asymmetric” way (i.e., without pre-coordination with the other system owners). The other key aspect is being able to do this dynamically, changing the interaction and its organizational scope at run time rather than at system development time. The first key aspect changes the political/social dynamics of organizations and their supporting information technology systems, and challenges information model assumptions and frames of reference. The second key aspect changes the technical approach to system architectures and generally makes them more autonomic and adaptive (and complex).

Another important observation to make here is that this definition implies a gradation of net-centricity. A system or an enterprise isn’t simply net-centric or not net-centric. Systems and enterprises have always interacted internally and with the environment to some degree. The operative question is how net-centric are these systems and enterprises? In other words, how open are these entities to interacting with previously unspecified systems and organizations over a network, and how rapidly and thoroughly can these entities be adapted to do so? The degree of net-centricity that is appropriate for any given system, collection of systems, or organizations, depends on what the organization wants to be able to accomplish or have the ability to accomplish within its chosen ecosystem.

This last sentence uncovers a third aspect to net-centricity; there is a price for achieving any given degree of net-centricity. If there wasn’t a price, organizations would simply always build the most open and adaptive architecture possible, one that anticipates every possible user and every possible use. Further, network connectivity doesn’t have infinite bandwidth or zero latency, nor is it free, although the price has dropped dramatically in recent years. More importantly, net-centricity implies a degree of organizational and system inter-dependence, one that is vulnerable to network unavailability and service level agreement shortfalls, as well as to changing economic and socio-political conditions. Trust arrangements, quality of service (QoS), and network security levels between systems and enterprises—even national boundaries—all factor into this equation.

In summary, net-centricity is a property of a system, a collection of systems, or an organization (including “virtual” organizations) that measures the openness to interacting with other similar entities (enabled by a network to accomplish the goals), the ability to be quickly adapted to support unanticipated interactions (commensurate with the goals), and how much cost can be tolerated in order to be able to do so via the network. This implies that we need a way to measure net-centricity along these three major axes or dimensions: openness, adaptability and cost tolerance. Arguably, the existing ASD(NII)/DoD CIO Net-Centric Checklist
 does this to some degree, although it focuses mostly on the second dimension of adaptability, and tends to present it as a binary condition rather than one of degree. The Network Centric Operations Industry Consortium (NCOIC) Systems Capabilities Operations Programs and Enterprises (SCOPE) model appears to be a good cut at addressing this by extending the content of the Net-Centric Checklist into the other two dimensions, and providing a scale instead of a yes/no answer for many of the criteria. This model is still in draft form and undergoing revisions within the NCOIC.
Service Oriented Architectures
Like net-centricity, service orientation as an institutional concept has been with us for a long time, with many traditional “trades” really consisting of services offered to others, usually for a fee. Military doctrine has also included the notion of services provided between force elements, especially in the logistics domain. Even in the combat domain, the notion of one force element providing a service to another has been prevalent for some time (although sometimes to the chagrin of the service provider). For example, the Defense Acquisition Guidebook
 Chapter 7.3.1, defines interoperability as “the ability of systems, units, or forces to provide data, information, materiel, and services to and accept the same from other systems, units, or forces and to use the data, information, materiel, and services so exchanged to enable them to operate effectively together.””.
A key aspect of service orientation, as exemplified by the above examples, is the notion that a service provider does not necessarily know who the service consumer will be prior to performing the service, and will provide the service to anyone with an authorized need or the means to pay for the service. Typically a service provider will publish a schedule of service offerings and associated fees and conditions, and make them available to potential customers of the service. In essence, this is a unilateral contract offering, closed when a service consumer agrees to the pre-published terms for a given service.

In the world of information systems, service orientation has been around for some time, but not widely used because most systems were built for a specified business scope with defined interfaces to other specific systems or organizations. There were some exceptions to this, driven by early desires to connect systems among enterprises in certain industries such as health care and electronic commerce. Value-added network (VAN) providers sprung up and domain-specific data interchange standards were developed such as Health Level Seven (HL7) in the health care sector and Electronic Data Interchange (EDI) in the general business sector. Many of these data exchange standards centered on a service definition such as filing a claim or placing an order. The Internet changed this dynamic a bit by eliminating the need for VANs, but not the need for service and associated data standards across individual organization boundaries. The Internet, however, did field a very important SOA, the domain name service (DNS). While quite simple and very limited in functional scope (but very broad in organizational scope), it made the World Wide Web and global email exchange practical.

The widespread adoption of Ethernet and transmission control protocol/Internet protocol (TCP/IP) as the standard system interconnection, changed the focus of many information system organizations from the individual client or server/host operating environment to that of the network enabling connection of multiple platforms and platform types. The Internet allowed this focus to be logically extended across enclave and enterprise boundaries, yet most organizations had enough to do just integrating systems within their enterprise boundaries. Despite the benefits of organization-wide execution platform standards, the realities of corporate budgets and equipment life-cycles typically meant that any sizable organization operated in a multi-vendor, multi-platform type environment. This state of affairs generated the “platform wars” of the 1980’s and 1990’s, and the emergence of various types of “middleware” intended to bridge between otherwise incompatible platform execution environments. Most of this technology was oriented toward point-to-point integration of specific applications, with other applications usually (or potentially) executing on a different platform.

There were efforts to introduce more service oriented middleware concepts like Common Object Request Broker Architecture (CORBA®) and enterprise service bus (ESB), but these had limited success within organizations because of cross-vendor incompatibilities and lack of standards between organizations. Some organizations with sufficient scope and resources developed their own SOA standards and supporting middleware. The Army Future Combat System (FCS) Program’s System of Systems Common Operating Environment (SOSCOE)
 is a good example of a tightly crafted SOA, based on a virtual and distributed execution platform environment layered on top of a commodity operating system. SOSCOE includes service composition and orchestration capabilities supported with rigorous QoS and service management services. However, it doesn’t let applications interact directly with the Internet without going through these same service management control layers and to a set of external interface services.

The desire to conduct commerce via the Internet forced a realization that platform-centric execution standards such as the Microsoft Component Object Model (COM), were not sufficiently independent of execution platform selection decisions to guarantee interoperation over the Internet, even if these standards were distributed over a network (i.e., DCOM), and were “vendor-independent” virtual, distributed, platform standards (e.g., Java 2 Platform, Enterprise Edition (J2EE), SOSCOE), Eventually this led to the development of the Simple Object Access Protocol (SOAP). A key feature of SOAP was that it made no assumptions about the providing and consuming execution environments other than that these environments could generate and receive/parse Extensible Markup Language encoded (XML-encoded) messages. SOAP quickly led to a flurry of additional standards for what became known as Web Services.

Interestingly, Web Services reinvigorated earlier work on SOAs within enterprise boundaries, serving as a common platform-independent technology base upon which to develop services and SOAs. However, work in this area typically was done on the assumption of executing the architecture inside an organizational boundary or with partners that agreed to operate within some supply chain relationship. Definition of and naming of services were handled by some enterprise governance body and supporting architects. Similarly service orchestration and associated business process definition were also handled this way, with business process specialists taking the lead. There were also varying degrees of “architecture” imposed by such governance bodies. Some would specify only “core” or “enterprise” services centrally, enabling business units to define their own domain-specific service sets, while others implemented a more centrally controlled, top-down service governance process.
Very few of these governance bodies have really grappled with the issue of crossing enterprise or context boundaries or with dynamic service selection or adaptation, the key elements of net-centricity. In part this is because doing so entails business ecosystem changes that are only starting to gain acceptance, and only in limited domains, such as in business to business (B2B) exchanges. And generally, when a given enterprise makes its services available outside its enterprise boundaries (e.g., to its customers or suppliers), it expects the external users to understand and adapt to its enterprise context. Of course, when that same enterprise acts as a customer or supplier to another enterprise, it finds that it is then asked to understand and adapt to the context of that other enterprise. The B2B model is one answer to this asymmetry, as is the adoption of “universal” service and associated data standards by all enterprises (presumably in a given industry sector or of similar business model type). But business model dynamics make it difficult for either of these solutions to gain widespread adoption.
The key underlying issue here is that all data representations and services assume a frame of reference and applicable scope. That’s why the terms “enterprise” and “stovepipe” are used to describe and differentiate systems and services. Usually these terms are treated as if the meanings are self-evident, with an implicit bias that “enterprise” is good and “stovepipe” is bad. But isn’t an “enterprise” a form of “stovepipe” when viewed from outside that particular enterprise? If one enterprise has a SOA at the “enterprise” level, what do the services (and associated exposed data) mean to another enterprise? In some cases, the meaning of the data and services is broadly (but not necessarily universally) understood and accepted, such as the representation of geo-spatial data. But even in such cases, the enterprise scope of the service offering is usually implicit in the identity/context of the service provider. So if we want to order a part for a Sears lawn mower, we have to use the Sears part number when ordering from Sears, and the original equipment manufacturer (OEM) part number when ordering directly from the OEM (assuming there is a separate OEM part number). In each case we might use the same or a very similar service type, but use a different service instance and a specific enterprise context and naming frame of reference (both the part number and the service name might be different). Barring the creation of a universally applicable item ordering service that allows the purchase of any item offered on the Internet from any source, a typical user on the Internet must know which service provider will furnish what the user needs, not just what services allow ordering of lawn mower parts. Thus, proper use of a service in a given SOA will always require the service requester to understand the context and frame of reference of the service provider. Further, the service requestor will need to understand the implications of that context and frame of reference to the applicability of the associated service and provided data to the requestor’s need.
In development that is not net-centric, we are so accustomed to having this enterprise context relationship defined for us that we tend to become unaware of the context and scope assumptions we make. When SOAs are built, even at the “enterprise” level (or possibly especially at the enterprise level), we tend to assume that service requestors will inherently and implicitly understand the scope of applicability of any services and data we advertise/register/expose. We also drive towards stability in exposed interfaces because of the dependencies between systems and organizations such interfaces generate, and the time, cost, and general disruption that changes to such interfaces can entail, especially across organizational boundaries. In the case of SOAs, the extent of such dependencies is often difficult to quantify because of the asymmetry between service provider and service requestor discussed earlier.
Both the need for stability and management of dependencies drive the urgency behind discussions of governance in SOAs. But governance is constrained by enterprise scope and is difficult to implement across enterprise boundaries. It is also influenced by the degree of institutionalization of a given cross-enterprise context (like a coalition or a supply chain vice a corporation or a Military Service) and the institutional style that promotes either rigid operating procedures or looser operating guidelines/principles. This applies even inside formal enterprise boundaries and affects how detailed and centrally controlled the governance process might be for creation and evolution of services, service standards, and associated information models, naming standards, and related reference files and data value authority services. Relying on governance to facilitate service interoperability, to some extent, also works against the second major attribute of net-centricity, namely dynamic adaptivity to changing operational circumstances and needs. Ideally, we’d like services to work readily with each other even if there was no pre-existing governance guidance to the specific services at issue, recognizing that this may be very difficult to achieve in practice.
In summary then, it appears that service-orientation and SOAs can facilitate implementation of net-centric capabilities, but by themselves don’t guarantee net-centricity. And current service oriented technology standards and products have not, as yet, done much to enable net-centricity, in main part because net-centricity is more a business model or organizational relationship issue than it is a technology issue. Industry is beginning to address the issue of service orientation across enterprise boundaries, driven by Internet-facilitated commerce, but much work remains to be done. Industry is constrained by market dynamics and the difficulty of making a business case for broad industry segment service providers without also generating competitive information disclosure and competitive advantage concerns.
Net-Centricity and Service Orientation
The preceding paragraphs outlined the key aspects of net-centricity and service orientation. Net-centricity focuses on enabling operations among systems across domain, context, and organizational boundaries. It also focuses on the potential for doing this dynamically and at low cost. Service orientation is a conceptual architecture which asymmetrically provides services to arbitrary service consumers, and thus supports to some degree the open-ended aspects of net-centricity. Service orientation is enabled by network technology, but to date has focused primarily on connecting systems regardless of the platform execution environment. By itself, it has not yet really addressed the issue of establishing the means to share services across organizational or domain or context boundaries except in isolated and constrained situations (e.g., partnering with eBay or Amazon in which the major partner dictates the service framework). Service orientation by itself does not drive systems to be dynamic or agile at run time, but services can be built to support such dynamic service selection and adaptivity.

So what, then, are the key characteristics that services and SOAs require to become more net-centric, realizing that net-centricity business model constraints will always limit what is achievable and operationally effective enough in a given institutional context (i.e., DoD, Department of Homeland Security, the Intelligence Community, North Atlantic Treaty Organization (NATO) Response Force, and The Global War on Terror)? The following set of characteristics is derived from the observations on key conceptual elements of net-centricity and service orientation in the preceding sections. The characteristics also draw on the SCOPE model work underway in the NCOIC. Each top level heading has potentially multiple sub-categories, only some of which are mentioned here. The list is probably incomplete, but is a useful start.
· Execution Platform Independence – Most industry SOA frameworks based on Web Services standards generally have this characteristic, but it pays to be explicit. Execution platform independence facilitates crossing system and enterprise boundaries because the likelihood that two different systems or enterprises employ identical execution platform environments or versions of those environment (including virtual environments such as J2EE and Microsoft .Net) for all service instances gets smaller as the number and breadth of services and systems/institutions involved gets larger. Put another way, it shouldn’t matter to either the service provider or the service consumer what each other’s system architecture is. All services should be accessible over the network via protocols that are system architecture independent, like XML. This implements the NCOIC Interoperability Framework model.
· Explicit Service Business Model – The business/institutional relationship between the service provider and the service consumer/user should be explicitly defined in the service description accessible over the network and the service interface definition should include parameters necessary to execute the business model. If the service is free to all consumers for any purpose and frequency whatsoever, the service description should so state. If there is a usage cost, licensing fee, or other usage restriction, the service interface should include parameters necessary to verify and implement the specified business model. Security domains, digital rights management, or similar multi-lateral agreements are examples of service usage restrictions that may not be strictly monetary in nature. Most SOAs to date leave many business model aspects of service invocation undefined because these architectures generally assume a single system or enterprise architecture scope. A more net-centric SOA would make more aspects of the service business model explicit and provided for in the service interface and supporting service management services.
· Explicit Service Scoping – The service description should include explicit definitions of the applicable scope of the service in terms of institutional domain, mission capability space, and operational context scope. If appropriate, additional service scope dimensions should be specifiable (e.g., geospatial area of coverage for a particular service instance). Service scope specifications should be discoverable and readily handled by potential service requestors over the network. Service naming conventions may be used to facilitate explicit service scoping, but use of explicit scoping parameters in the service interface definition might generally be a better approach. Both have business model and service provisioning implications.
· Environment Monitoring, Assessment, and Adaptation – Service requestors should devote more resources to monitoring the availability of services, the service versions on the network, and the current service performance, rather than assuming this is done at design or system configuration time. They need to be prepared to select new service instances or versions, or even new services that might become available that are more appropriate to their own mission/enterprise objectives. Service requestors may need to be more aware of network performance and latency, and convey any issues to their immediate customers/users. They should also be less trusting of service providers and sensitive to any certification parameters or trust mechanisms offered in the SOA. Conversely, service providers should be explicit about service certification state and versioning information, exposing version information in the service interface itself. Service management services should support this type of discovery, assessment, and adaptation interaction over the network
· Autonomicity – In general, information about services and SOAs, such as design, configuration, network and geospatial distribution, security domain, certification state, composability, current performance, and functional/organizational scope dimensions, need to be accessible over the network via, and for, service management services. Historically, this kind of information was compiled in design documents and configuration management systems that were not accessible to the run time software and services. The net-centric model, with its emphasis on crossing system boundaries and dynamic adaptivity, suggests that increasingly, this kind of information needs to be available to the service instances themselves so that these instances can appropriately monitor and adapt to changing network and operational mission and context conditions.
Clearly, this is a very challenging and potentially costly set of attributes to implement in services and SOAs. And in many cases, only very modest measures along any of these attribute dimensions will be more than sufficient to achieve the desired level of operational effectiveness in desired operational contexts. But it is nonetheless important to characterize services and SOAs along these dimensions so that well-informed and explicit decisions can be made regarding how “net-centric” services and SOAs should be. Otherwise the decisions will be made strictly in a local, program-centric context with significant likelihood that the larger institutional objectives will be impaired.
� AFEI Data Sharing and Services Strategy (DS3) Working Group White Paper: Facilitating Shared Services in the DoD, February 12, 2006, is available at the AFEI web site (� HYPERLINK "http://www.afei.org" ��www.afei.org�).

� DoD Command and Control Research Program published books on net-centricity are available at DoD CCRP web site (� HYPERLINK "http://www.dodccrp.org" ��www.dodccrp.org�).

� ASD(NII)/DoD CIO Net-Centric Checklist Version 2.1.3, May 12, 2004, is available at the ASD(NII) web site (� HYPERLINK "http://www.dod.mil/nii/net-centricity.html" ��http://www.dod.mil/nii/net-centricity.html�).

� Defense Acquisition Guidebook, Chapter 7: Acquiring Information Technology and National Security Systems, July 30, 2004 Version 2.1.4, is available at the Defense Acquisition University web site (� HYPERLINK "http://akss.dau.mil" ��http://akss.dau.mil�)

� SOSCOE information is available at the Army FCS web site (� HYPERLINK "http://www.army.mil/fcs/factfiles/network-soscoe.html" ��http://www.army.mil/fcs/factfiles/network-soscoe.html�).

AFEI DS3WG, The Essence of Net-Centricity, October 12, 2006

 7

