# NISS

# Data Confidentiality and Statistical Disclosure Limitation: A Quick Overview

Alan F. Karr
National Institute of Statistical Sciences
Research Triangle Park, NC 27709
karr@niss.org

#### DC from Multiple Perspectives

- Official statistics agencies must
  - Preserve confidentiality of data
  - Preserve privacy of data subjects
  - Maintain quality of data
  - Disseminate useful information
- Holders of proprietary data want to
  - Safeguard IP
  - Advance research to create new products
- Data subjects want protection from threats to
  - Privacy
  - Economic interests

#### Forms of Disclosure

- Identity disclosure
  - Record is associated with a particular subject,
     typically by record linkage to another database
     containing an ID
- Attribute disclosure
  - Value of sensitive attribute is disclosed
- Inferential disclosure
  - Identity or attribute disclosure on a statistical basis
- False positive
  - Intruder acts on basis of incorrect disclosure

#### How Easy is It?

- Most people can be identified by
  - Date of birth (MM/DD/YYYY)
  - Gender
  - 5-digit ZIP code
- Finding these items on the web is
  - Easy
  - Generally free (ChoicePoint, crooks and others charge)

#### An Experiment



SBOE Home :: Campaign Finance :: En Español :: Board Members :: SBOE Staff :: County Offices :: Search

CHECK YOUR VOTER
REGISTRATION HERE

Voter Registration Voting Information Data and Statistics Forms Election Laws SEIMS Related Links

#### Voter Data Results From The NC Statewide Database

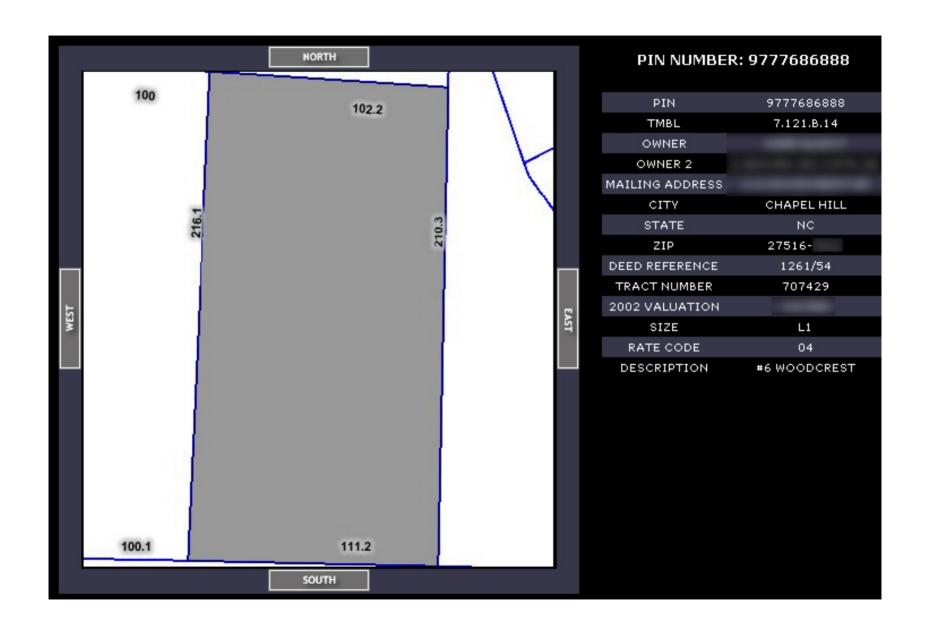
|              | Click Here to Search for Another Voter. |
|--------------|-----------------------------------------|
| Name:        | KARR, ALAN FRANCIS                      |
| County Name: | ORANGE                                  |
| Status:      | ACTIVE                                  |
| City:        | CHAPEL HILL NC 27516                    |
| Race:        | WHITE                                   |
| Ethnicity:   | NOT HISPANIC or NOT LATINO              |
| Gender:      | Male                                    |
| Party:       |                                         |



846 West St., New York, NY 10001 Search using Age or birthday

Born: Sep. 11, 1902

Locateme.com Click here for a Name and Age Search Smith, John R.


Click here for Addresses and Phone Numbers of your search subject.

#### **NEW!** Anybirthday.com PLUS lists Addresses!

Subject's Name Birthday Zip Code

FKARR ALAN 27516

ADDRESS: \* Included for Plus Users Only Click for Anybirthday PLUS



## The Fundamental Issue: Tradeoffs Between

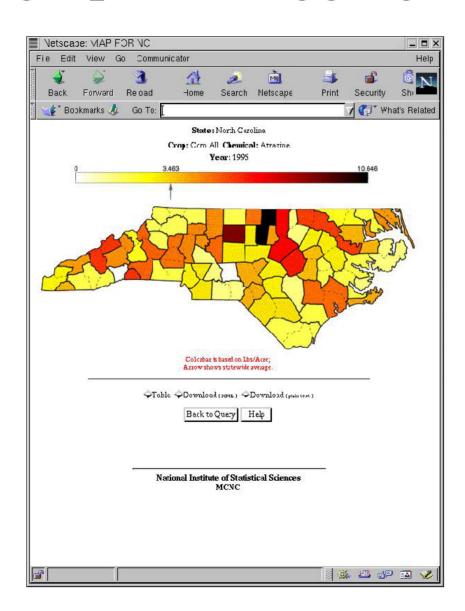
- Confidentiality protection
  - Mandated by law
  - Imposed by regulation
  - To maintain quality
- Data utility, to support
  - Policy formulation and evaluation
  - Research, especially statistical inference

#### Risk-Utility Formulations

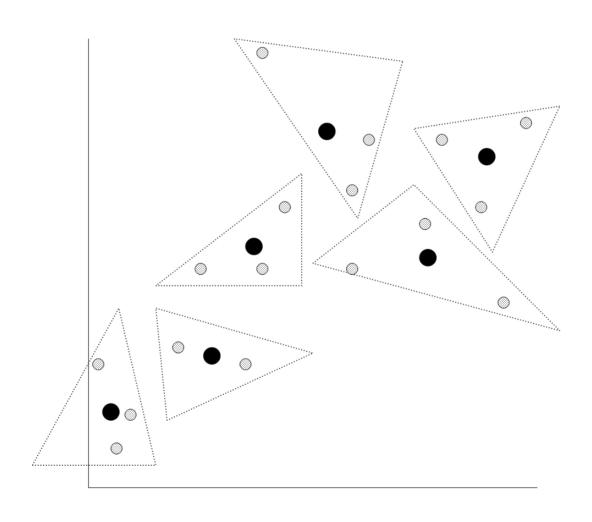
- Components
  - − Database 𝒯
  - Set  $\mathcal{R}$  of candidate releases  $R = f(\mathcal{D})$
  - Disclosure risk function **DR**(R)
  - Data utility function **DU**(R)
- Goal: Select the "best release"
  - Maximize utility subject to constraint on risk
  - Select from risk-utility frontier

#### High-Level View of SDL

- Restricted access
  - To approved individuals, for approved analyses, at a restricted data center, at a cost, under additional restrictions
- Restricted data: "the truth but not the whole truth"
  - Drop attribute
  - Coarsen categories: Geographical aggregation, top-coding
- Altered data: not the truth
  - Microaggregation
  - Data swapping
  - Perturbation
  - Synthetic data


#### High-Level View of SDL—2

- Servers
  - Disseminate analyses rather than data
- Poor quality data = "the best defense"?
- Hope to err on the side of confidentiality


#### Sampler of SDL Techniques

- To be illustrated
  - Geographical aggregation
  - Microaggregation
  - Data swapping
  - Servers
- Others include
  - Sample from the data
  - Cell suppression for tabular data
  - Jittering

#### Geographical Aggregation



### Microaggregation



### Data Swapping (CPS data)

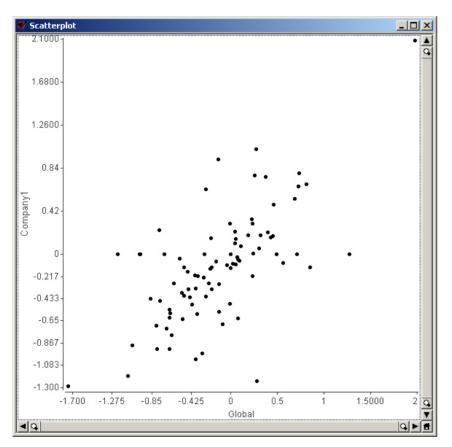
| Record           | Age                 | EmplType         | Educ                | MarStat                | Race          | Sex         | AveHours         | Salary                     |
|------------------|---------------------|------------------|---------------------|------------------------|---------------|-------------|------------------|----------------------------|
| 1 г              | - <25               | Gov              | HS                  | Marr                   | W             | M           | 40               | <\$50K                     |
| 2                | 25-55               | SE               | Bach                | Marr                   | NW            | M           | >40              | <\$50K                     |
| 3                | 25-55 -             | Gov              | Bach+               | Unmarr                 | NW            | F           | >40              | >\$50K                     |
| 4                | >55                 | Priv             | Bach                | Unmarr                 | W             | F           | >40              | <\$50K                     |
| 5                | <25 -               | Other            | SomeColl            | Marr                   | W             | Μ           | 40               | >\$50K                     |
| 6 L              | - >55               | Priv             | Bach+               | Marr                   | NW            | F           | 40               | >\$50K                     |
|                  |                     |                  |                     |                        |               |             |                  |                            |
| Record           | Age                 | EmplType         | Educ                | MarStat                | Race          | Sex         | AveHours         | Salary                     |
| Record           | Age<br>>55          | EmplType<br>Gov  | Educ<br>HS          | MarStat<br>Marr        | Race<br>W     | Sex<br>M    | AveHours<br>40   | Salary<br><\$50K           |
| Record<br>1<br>2 | _                   |                  |                     |                        |               |             |                  |                            |
| 1                | >55                 | Gov              | HS                  | Marr                   | W             | M           | 40               | <\$50K                     |
| 1<br>2           | >55<br>25–55        | Gov<br>SE        | HS<br>Bach          | Marr<br>Marr           | W<br>NW       | M<br>M      | 40<br>>40        | <\$50K<br><\$50K           |
| 1<br>2<br>3      | >55<br>25–55<br><25 | Gov<br>SE<br>Gov | HS<br>Bach<br>Bach+ | Marr<br>Marr<br>Unmarr | W<br>NW<br>NW | M<br>M<br>F | 40<br>>40<br>>40 | <\$50K<br><\$50K<br>>\$50K |

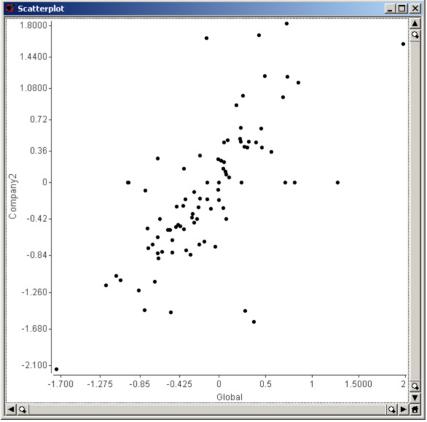
#### Synthetic Data

- Basic paradigm
  - Fit a statistical model to the confidential data
  - Use the model in Monte Carlo mode to synthesize a database of the same size as the original one
  - Disseminate the synthetic data
- Advantages
  - Risk low: records aren't real
- Disadvantages
  - Utility may be low: does analysis on synthetic data may not yield same result as on original data

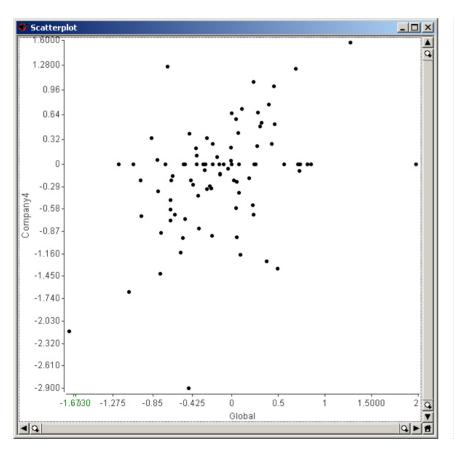
#### Emerging Idea 1: Servers

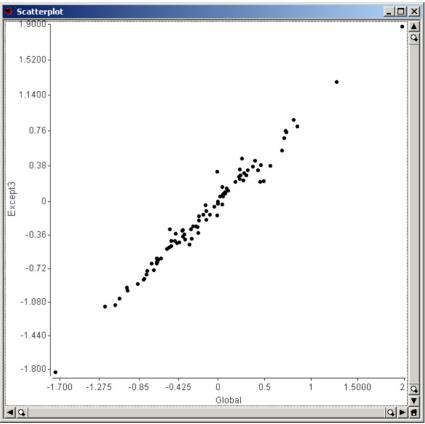
- Web-based systems to which users submit queries for analyses of a confidential database
- Servers must
  - Assess risk, taking into account interactions with previously answered queries
  - Assess utility, accounting for queries that become unanswerable
  - Decide whether and how to respond, keeping in mind that a denial may be informative


#### Emerging Idea 2: Secure Analysis of Distributed Data


- Related databases held by multiple "agencies"
  - Example: local employment data
- Agencies wish to perform sound statistical analyses on integrated data, but
  - Actual data integration impossible
  - Other constraints are present (no trusted third party)
- Approach: use secure multi-party computation to share data summaries that are sufficient to perform the analysis

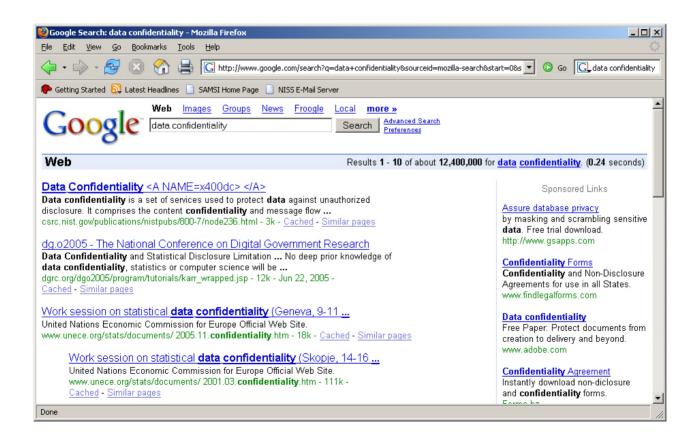
## Example: Chemical Data from Multiple Pharmaceutical Manufacturers


- Data
  - 1318 molecules
  - Response: water solubility
  - Predictors: 90 molecular descriptors + constant
- 4 companies
  - Each company's data are relatively homogeneous, but with gaps!
  - Numbers of molecules = 499, 572, 16 (!), 231
- Analysis: linear regression


#### Results






#### Results—2





#### More Information

- NISS DG project web site: www.niss.org/dgii
- Google



#### What's the Future?

