Policy Virtualization using Rule-based Data Grids

Arcot Rajasekar, Mike Wan, Wayne Schroeder, Reagan Moore

University of California, San Diego

{sekar,mwan,schroede,moore@sdsc.edu}

Abstract:

The integrated Rule-Oriented Data System (iRODS) is a rule-based data management system that explicitly characterizes policies as rules controlling server-side workflows. By automating the execution of data management processes, petabyte-sized collections can be assembled and managed, with minimal administrative labor support. By defining rules that evaluate assessment criteria, the trustworthiness of a repository can be automatically verified. Rules can be defined that both control the execution of data management procedures, and verify that the procedures have been completed successfully. The iRODS software implements the data virtualization mechanisms provided by data grids, enabling the formation and automated management of distributed shared collections.

1. Introduction:
Scientific disciplines are assembling collections of digital holdings that comprise the intellectual content on which future research is based. These digital holdings can be massive in size, measured in petabytes and hundreds of millions of files, and must be maintained for decades. In addition, the digital holdings are distributed across multiple institutions, and are published in collections for access by other researchers. The result is an ever-growing demand for software infrastructure that simultaneously supports data sharing, data publication, and data preservation.

The ability to meet the management policies required for each data management application has driven the development of the next generation of distributed digital repositories, the integrated Rule-Oriented Data System (iRODS) [1]. The iRODS system builds upon concepts from multiple communities; data grids (data and trust virtualization, and well defined data operations implemented as remote micro-services), workflows (the composition of micro-services executed as server-side workflows), database triggers (deferred and periodic rule execution and transactional operations), and logic programming (recursive rule expression and forward rule-chaining). The iRODS architecture is based on execution of micro-services at remote storage systems under the control of rules expressed as event:condition:action-sets:recovery-sets. The action-sets are composed by chaining multiple micro-services and rules. Transaction semantics are maintained through the invocation of recovery procedures on the failure of a micro-service. The system manages persistent state information to track the outcome of applying each micro-service. The persistent state information can be queried to verify that management policies have been correctly applied.

The iRODS system is being developed as an international collaboration with the goal of producing open source software. Multiple releases have been made, with the current version 1.0 available at http://irods.sdsc.edu. The Data Intensive Computing Environments group at the University of California, San Diego is leading the effort, based upon extensive prior experience with the development of the Storage Resource Broker (SRB) [2] data grid. Note that the SRB is in production use throughout the world in support of internationally shared collections, currently managing about 3 Petabytes of data. The SRB is generic data grid middleware that supports a wide variety of data management applications (collection building, data sharing, data publication, data preservation, real-time sensor stream management, and data analysis). Through these multiple applications, the required set of fundamental micro-services needed for remote data management have been defined. The production SRB data grids have also defined a minimal set of administrative management policies that need to be automated to minimize the labor required to maintain large distributed collections.

The iRODS technology builds upon extensive experience with workflow systems. A major requirement in the design was the need to ensure application of management policies independently of the choice of the client access mechanism. Thus the iRODS system controls policies through server-side workflows. The management policies are applied at the remote storage system and directly control execution of micro-services that are based on the operations identified in production use of the SRB data grid [3].

The iRODS system also builds upon database technology. In particular, the ability to generalize the concepts of transactions and triggers was needed to automate error recovery. In distributed systems, a remote operation may fail to complete if a system has been taken down for maintenance, or if network access is disconnected. In these cases, a deferred operation can be created that will complete the desired operation when the systems become available. A second requirement is the ability to execute periodic commands to validate assertions about collection properties such as integrity and authenticity. Data system triggers can be applied on ingestion of datasets into the iRODS system with sophisticated pre- and post-ingestion checking. Processing examples include domain-specific validation (e.g. anonymization of clinical data), automatic replication, digital signature/checksum computation, and curation processes. Many of these can be scheduled for delayed processing with automated notification on completion.

The iRODS technology builds upon logic programming concepts. In particular, server-side workflows are implemented by chaining rules together. Each rule specifies the order in which multiple micro-services should be executed. The rules can specify the execution of additional rules in a nested hierarchy. The SRB data grid implemented hard-coded software that accessed persistent state information, specified the order of execution of operations, and managed the updates to persistent state information. The same approach is being taken in iRODS, with the exception that the rules are expressed in a rule base instead of hard-coded software program functions. Although the initial iRODS rule base implements the management policies that were supported in the SRB software, additional policies can be defined and dynamically added to the system. By defining logical name spaces for rules, micro-services, and state information, it is possible to create new versions of rules or entirely new rules that are self-consistently applied by iRODS. The iRODS system is designed to support its own evolution.

2. iRODS Architecture:

Figure 1 defines the software layers in an iRODS data management server. The top layer provides access interfaces to clients and supports a robust protocol for communication between clients and remote servers and between peer-level servers. The bottom layer provides translation drivers for connecting to and communicating with storage systems such as file and tape archives, databases and object-based sensor streams. The middle layer is the intelligent software system that not only provides physical transparency, hiding the idiosyncracies of the client and driver levels, but also provides the data management functionality for performing operations needed by data grids and long-term preservation systems. In the SRB, the middle layer is a single software package providing hard-coded functions. In iRODS, this layer is split as shown, defining a standard set of actions that translate into rules providing data grid services which in turn are composed of micro-services (and possibly other actions and rules). By differentiating the software system into distinct layers we provide flexibility in defining operational semantics. Each action is composed through rules that can be adapted to meet the needs of the community using that particular instantiation of the data grid system. In other words, the SRB provided a one-size-fits-all architecture with no provision for tailoring the operations to provide tunable services; whereas iRODS provides an adaptive framework that can be modified to meet the needs of each user community.

[image: image1.png]Access Interface

Standard Access;Actions

Data Grid Services

StandardiVIicro=services

Policies & Practices

Figure 1. iRODS Layered Architecture

The SRB data grid architecture consisted of remote servers that implemented standard operations performed at each storage resource (database or file system or archive), a metadata persistent repository, and client and administrative interfaces. The effect of applying any operation was tracked and stored as persistent metadata that could be queried. The iRODS data grid architecture builds upon similar components. However the remote servers are now composed from micro-services that encapsulate each desired remote operation. The rules that control the composition of the micro-services are stored in a rule base and executed by a distributed rule engine, located at each storage resource.

Policies are expressed as rules that are stored in the rule base. The rules are expressed as Event:Condition:Action-set:Recovery-set, where the actions and recovery procedures operate on a cache of current state that is extracted from the Metadata Persistent Repository. A rule invoker selects which rules to apply. The administrative interface includes additional modules to validate changes to the rules, changes to the system configuration (such as addition of new storage resources), changes to the micro-services, and changes to the persistent metadata. The components are shown in Figure 2.

Figure 2. iRODS Architecture

3. Virtualization in iRODS
The iRODS architecture decouples clients from dependencies on physical systems through multiple virtualization levels. The user interacts with well-defined sets of “logical” namespaces. The underlying operations and access mechanisms are completely hidden from the user. The following name-spaces are provided for defining operations at the client-level:

1. Persistent State Namespace (Database Catalog) – These are (logical) attributes that are maintained in the iCAT database to describe information about datasets, collections, resources and users. They can be used to map logical attributes to physical values during run time (e.g. the logical data name in iRODS is converted to a host name and file path name at data retrieval time). The database catalog manages a complex relational schema that is stored in an object-relational database. However the users only see a single universal table making it easy to both query and update attribute values.

2. Temporary Session Namespace (Internal Rule Execution Environment) – These are logical names given to data structures and variables that are cached as current state in a blackboard in the rule execution run-time environment. The micro-services manipulate these variables and structures and use them to pass values by reference in a workflow chain. The rule execution environment is quite complex with recursive data structures and object definitions. But the user only sees a list of attributes that they can manipulate and access without having to worry about the operations needed to populate the blackboard.

3. Micro-service Definitions – These provide a set of services that manipulate the persistent name spaces and the current state. Micro-services can modify the data in the shared collection and thus have impacts in the real world outside the current state cache. The micro services have well-defined input-output signatures and can pass parameters by value as well as manipulate attributes in the above two name spaces.

4. Rule Base for Actions (composed of micro-services and other rules) – These are workflows that are defined to perform an action. The actions themselves are organized in an external action ontology with well-defined semantics. The actions invoke an ordered set of rules (possibly with alternate versions through conditional execution) that can be viewed as a workflow. The workflow supports for/while-loops and conditional paths, delayed execution syntax, remote execution, and spawning of parallel execution micro-services.

	Data attributes
	

	DATA_ID
	Unique identifier for a registered file

	DATA_COLL_ID
	Unique identifier for the collection

	DATA_NAME
	Logical name of the file in the data grid

	DATA_REPL_NUM
	Replication number of the file.

	DATA_VERSION
	Version of the file.

	DATA_TYPE_NAME
	Type of the file (.doc, .pdf, …)

	DATA_SIZE
	Size of the file in bytes

	DATA_RESC_GROUP_NAME
	Group name of storage resources

	DATA_RESC_NAME
	Storage resource name for file storage

	DATA_PATH
	Physical path name of the file

	DATA_OWNER_NAME
	Owner of the file (USER_NAME)

	DATA_OWNER_ZONE
	Home zone of the owner (USER_ZONE)

	DATA_REPL_STATUS
	Status condition of a file (current, stale)

	DATA_CHECKSUM
	MD5 checksum of the file

	DATA_EXPIRY
	Retention date of the file.

	DATA_CREATE_TIME
	Date of file registration

	DATA_MODIFY_TIME
	Last time the file was modified.

5. Ontology of Data Management States for Impact on the Real World – The iRODS system supports operations that are performed in the real world and change the data in the shared collection. For example, the action ‘replicate’ will create an extra copy of the data object in another storage resource controlled by the data grid. Information about the existence of the new copy is registered in the persistent iCAT catalog as replica attributes for the data object under consideration.

4. iRODS Persistent State Information
A key requirement of the architecture is that it should implement the same data and trust virtualization mechanisms previously implemented in the SRB. Data virtualization corresponds to the management of standard operations at each remote storage system, while tracking all required state information independently of the remote storage system. A logical name space for files is used to track persistent state information saved as attributes on the logical file name space. The current persistent attributes for files are shown above for the iRODS system and include information about the mapping from the logical file name to the physical file location, the file replication number, the file size and owner, integrity information, and checksum and retention period information. Additional attributes will be defined as new micro-services are added.

	Collection attributes
	

	COLL_ID
	Unique collection identifier

	COLL_NAME
	Collection name

	COLL_PARENT_NAME
	Name of the parent collection

	COLL_OWNER_NAME
	Name of the collection owner (USER_NAME)

	COLL_OWNER_ZONE
	Name of the home zone of the collection owner (USER_ZONE)

	COLL_COMMENTS
	Owner defined comments

	COLL_CREATE_TIME
	Date collection was created

	COLL_MODIFY_TIME
	Time collection was last modified

The files can be arranged in a logical collection hierarchy. The organization imposed upon the logical file names is independent of the organization of the physical files at each remote storage location. The persistent state attributes associated with each logical collection name are listed to the right. They include the owner of the collection, and the creation date. Additional attributes have been defined to support soft links and sticky bits for access control inheritance, which will be implemented in future releases.

	User attributes
	

	ZONE_ID
	Unique identifier for the data grid, called a zone

	ZONE_NAME
	Name of the data grid

	USER_ID
	Unique identifier for a user within a zone

	USER_NAME
	Name of the user

	USER_TYPE
	Role of the user (rods_user, rods_administrator)

	USER_ZONE
	Home zone of the user

	USER_DN
	User distinguished name for security certificate

	USER_INFO
	Address of the user

	USER_COMMENT
	Data grid administrator comment on user

	USER_CREATE_TIME
	Date user identity was created

	USER_MODIFY_TIME
	Last time the user identity was modified

Trust virtualization is based upon having the iRODS data grid own the files that are deposited at each remote storage location. The iRODS system assumes the responsibility for authenticating users and managing access controls. Since the purpose of building the shared collection is to simplify the sharing of files, this approach makes it possible to have a user add access permissions without involving a data grid or remote system administrator. A user is uniquely identified by the combination {USER_ZONE, USER_NAME}. When user names are cross-registered between two data grids, both their USER_ZONE and USER_NAME are registered, allowing persons in two different data grids to have the same USER_NAME.

	Access control attributes
	

	DATA_ACCESS_TYPE
	Unique identifier for the type of access permission

	DATA_ACCESS_NAME
	Name of the access permission (read, write, own, null)

	DATA_TOKEN_NAMESPACE
	Namespace used to specify internal parameters for managing data

	DATA_ACCESS_USER_ID
	Unique ID of the user

	DATA_ACCESS_DATA_ID
	Unique ID of the file

The triplet {DATA_ID, USER_ID, DATA_ACCESS_TYPE} is used to define data access controls. Note that access controls can only be defined on files registered into the data grid, and not on files in other independent data grids. A “null” access permission removes access rights. The owner of the file can assign “own” permission” to another user. This grants that user the right to set up further access permissions for other users of the data grid.

	Resource attributes
	

	RESC_ID
	Unique identifier for a storage resource within a zone

	RESC_NAME
	Name of the storage resource

	RESC_ZONE_NAME
	Name of the zone in which the resource is located

	RESC_TYPE_NAME
	Type of storage resource (unix-file-system)

	RESC_CLASS_NAME
	Class of storage resource (archival, permanent disk, cache, temporary disk)

	RESC_LOC
	Location of storage resource (IP internet address)

	RESC_VAULT_PATH
	Path name under which files are stored on resource

	RESC_COMMENT
	Data grid administrator comment on storage resource

	RESC_CREATE_TIME
	Date storage resource vault was created

	RESC_MODIFY_TIME
	Last time the storage resource vault was modified

The actual physical file name under which a file is stored is generated by a rule. The physical path name is the concatenation of RESC_VAULT_PATH and DATA_NAME, or it can be a guaranteed unique physical name generated by a path specification that includes time stamps and a random number. While the SRB data grid tracks the amount of free space available at the storage resource, this feature is not yet available in the iRODS data grid (release 1.0).
	User groups
	

	USER_GROUP_ID
	Unique identifier for a user group

	USER_GROUP_NAME
	List of users (USER_ID) in the user group

To simplify data grid administration, users may be organized in groups. A user may belong to multiple groups, and access permissions may be assigned to the group. This simplifies the management of projects in which multiple users have the same access permissions.

	Resource groups
	

	RESC_GROUP_RESC_ID
	Unique identifier for a storage resource group

	RESC_GROUP_NAME
	List of storage resources (RESC_ID) in the resource group

Similarly, storage resources can be aggregated into a resource group. This provides essential fault tolerance and load leveling capabilities needed when administering distributed resources.

When a file is written to a logical resource group, the file can be stored under a rule specifying fault tolerance, with the file stored on the first available storage system in the list. An example is a logical group containing a disk cache and a tape archive. If the disk cache is full, the file is automatically stored on the tape archive, ensuring the write can always complete. For a logical resource representing a cluster of file system vaults, the write can be executed under a load-leveling rule, with files equally distributed across all of the storage resources.

	Descriptive metadata for files
	

	META_DATA_ATTR_NAME
	Name of descriptive metadata attribute

	META_DATA_ATTR_VALUE
	Value associated with the descriptive metadata attribute

	META_DATA_ATTR_UNITS
	Units associated with the value

	Collection metadata
	

	META_COLL_ATTR_NAME
	Name of descriptive metadata attribute for a collection

	META_COLL_ATTR_VALUE
	Value associated with the descriptive metadata attribute for the collection

	META_COLL_ATTR_UNITS
	Units associated with the value

 Descriptive metadata attributes can be defined for any of the logical name spaces. Descriptive attributes can be added to the files, to the collections, to the resources, and to the users. Each descriptive attribute is characterized by an attribute name, an attribute value, and a unit. Since the attribute name is explicitly stored, new attributes can be added at will to the system. It is possible for each collection to use a different set of descriptive attributes that are dynamically added over time. It is possible for a file to have unique descriptive attributes shared by no other files. Rules are used to specify the relationships between attributes assigned to collections and attributes

	Resource attributes
	

	META_RESC_ATTR_NAME
	Name of descriptive metadata attribute for a resource

	META_RESC_ATTR_VALUE
	Value associated with the descriptive metadata attribute for the storage resource

	META_RESC_ATTR_UNITS
	Units associated with the value

	User attributes
	

	META_USER_ATTR_NAME
	Name of descriptive metadata attribute for a user

	META_USER_ATTR_VALUE
	Value associated with the descriptive metadata attribute for the user

	META_USER_ATTR_UNITS
	Units associated with the value

assigned to files. A file can inherit the attributes of the collection. Attributes assigned to users can be used to specify membership in projects, home institution, and project specific roles.

	Rule attributes for delayed execution
	

	RULE_EXEC_ID
	Unique identifier for a rule

	RULE_EXEC_NAME
	Name of the rule

	RULE_EXEC_REI_FILE_PATH
	Session identifier for a rule within the execution queue

	RULE_EXEC_USER_NAME
	Name of the user executing the rule

	RULE_EXEC_ADDRESS
	Location of the host where the rule will be executed

	RULE_EXEC_TIME
	Date when the rule will be executed (Unix seconds since Jan 1 1970.)

	RULE_EXEC_FREQUENCY
	Period in seconds after which a periodic rule is executed again

	RULE_EXEC_LAST_EXE_TIME
	Time when the rule was last executed.

	RULE_EXEC_STATUS
	Status of the rule execution (failed, retry, done)

 A major distinction between the SRB data grid and the iRODS data grid is the support in iRODS for asynchronous execution of remote operations. In the SRB data grid, all operations were performed synchronously. A flag could be set denoting that a remote copy was not made, or that a replica had been modified and thus replica synchronization was needed. In iRODS, a queue system is provided that allows rules to be specified for future execution. It is possible to set up periodic rules that will be executed at a fixed interval in time such as every week or month. The status of the execution of each rule is tracked. Rules can be dynamically added to the queue, modified, or deleted from the queue.

	Token definition
	

	TOKEN_NAMESPACE
	Namespace used to identify token attributes

	TOKEN_ID
	Unique identifier of the token

	TOKEN_NAME
	System parameter name

	TOKEN_VALUE
	Value of the token

	TOKEN_VALUE2
	Second associated value for token

	TOKEN_VALUE3
	Third associated value for a token

	TOKEN_COMMENT
	Comment defining purpose of token

The iRODS system uses internal parameters stored as tokens to control consistency, define standard operating practice, and specify assessment criteria. The internal parameters are named and stored in the persistent state information repository. This makes it possible to change how the system functions without having to modify code. New tokens can be added that will be used by new micro-services.
5. iRODS Micro-services

The iRODS system uses micro-services to encapsulate remote operations. Each micro-service performs an explicit function. Desired capabilities can be composed by chaining micro-services together. When a micro-service executes successfully, the persistent state information is automatically updated. The goal is to provide a consistent

	Test Services:
	

	print_hello()
	prints hello into errorlog

	print_bye()
	prints bye into errorlog

	print_eol()
	prints an “end of line” into errorlog

	print_hello_arg(arg)
	prints a given string into errorlog

	System Services:
	

	msiVacuum()
	periodic Postgres vacuum

	admChangeCoreIRB(file)
	change the core.irb file

	admShowCoreIRB(buf)
	display the current core.irb file

	Workflow operations:
	

	nop,null
	no action

	cut
	not to retry any other rules

	succeed
	succeed immediately

	fail
	fail immediately - recovery and retries are possible

	msiGoodFailure
	fail but no recovery initiated.

	msiNullAction
	same as nop

	ICAT Services:
	

	msiCommit
	commit the database transaction

	msiRollback
	roll back the database transaction

	msiRegisterData
	register a new data object

	msiCreateUser
	create a new user

	msiDeleteUser
	delete a user

	msiCreateCollByAdmin
	create a collection (administrator)

	msiDeleteCollByAdmin
	delete a collection (administrator)

	User Services:
	

	msiExtractNaraMetadata
	parse NARA metadata hierarchy

	msiLoadMetadataFromFile
	load metadata from an .mdf file

	msiGetDataObjAVUs
	retrieve descriptive attribute-value-unit metadata for a file

	msiGetDataObjPSmeta
	retrieve persistent state attributes

	msiSendMail
	send email!

	msiGetObjType
	find if a given object is data, collection, or resource

	msiAssociateKeyValuePairsToObj
	ingest metadata from a AVU structure

	msiExtractTemplateMDFromBuf
	extract AVU info using template

	msiReadMDTemplateIntoTagStruct
	load template file contents into Tag structure

data management environment. For this to be feasible in a distributed environment, recovery

procedures are needed to ensure transaction semantics.

Thus for operations that commit metadata to the persistent metadata repository, a Rollback recovery micro-service is provided. When a micro-service does not execute completely successfully, it is possible to queue a rule that will complete the operation at a future date. An example is the creation of a replica of a file. If the desired system is down at the time of the micro-service execution, a rule can be executed in the future to complete the creation of the replica. The decision to allow delay of the replica creation is an administrative management policy. For very important collections, the risk incurred by delaying the creation of the replica may not be allowable, and thus a different recovery mechanism may be required. Included in the list of Workflow operations are commands that are used to manage the rule execution. Thus the “cut” command causes the rule engine to not retry any other applicable rule for the desired action.

	DataManagementServices:
	

	msiSetResource
	sets the resource from default

	msiGetNewObjDescriptor
	allocates a new data stream

	msiPhyDataObjCreate
	create a low-level file for rei->doi

	msiSetResourceList
	gets a resource based on conditions

	msiSetDefaultResc
	set resource using internal scheme unless overridden

	msiSetRescSortScheme
	set best resource from a list

	msiSysReplDataObj
	replicate rei->doi data to resource

	msiStageDataObj
	stage a file to the given cache-resource

	msiSetDataObjPreferredResc
	sort resources based on data preference

	msiSetDataObjAvoidResc
	remove resource from internal list

	msiSortDataObj
	sort datalist in rei based on hint

	msiSysChksumDataObj
	do a checksum for data in rei

	msiSetDataTypeFromExt
	get data type based on file extension

	msiSetNoDirectRescInp
	sets a list of resources specified by user.

	msiSetNumThreads
	sets parallel i/o parameters -

	msiDeleteDisallowed
	disallows delete for file in rei.

	msiDataObjCreate
	create file

	msiDataObjOpen
	open file

	msiDataObjClose
	close file

	msiDataObjLseek
	seek to location in file

	msiDataObjRead
	read bytes in a file

	msiDataObjWrite
	write bytes in a file

	msiDataObjUnlink
	unlink file

	msiDataObjRepl
	replicate file

	msiDataObjCopy
	copy file

	msiSetMultiReplPerResc
	allow multiple replicas on a resource

	msiDataObjPut
	put a file into iRODS from local disk

	msiDataObjGet
	copy a file from iRODS to local disk

	msiDataObjChksum
	checksum a file

	msiDataObjPhymv
	move file to a new physical location

	msiDataObjRename
	rename a file

	msiDataObjTrim
	decrease the number of replicas

	msiCollCreate
	create a collection

	msiRmColl
	remove a collection

	msiPhyPathReg
	register a file into a collection

	msiObjStat
	stat a file

	msiDataObjRsync
	synchronize file copies

	msiFreeBuffer
	release a buffer

	msiNoChkFilePathPerm
	ignore file access permission check

	msiNoTrashCan
	turn off use of trash can

	msiSetPublicUserOpr
	allow public use

	msiExecCmd
	Remotely execute a user process

	msiSetGraftPathScheme
	define physical file path name scheme

	msiSetRandomScheme
	Load level across resource group

	msiCheckHostAccessControl
	verify access control on remote storage

The data management services comprise the operations that were needed in the SRB data grid. These operations include byte level operations upon a remote file, as well as file manipulation operations such as replicate. The reference to “rei” is the rule execution environment. This is a temporary cache of metadata and data that is used to store results until the entire rule has successfully completed. For example, the reference to “doi” is the actual storage location of files at a remote storage resource.

Planned developments include a generic bundle management system to support the physical aggregation of files before storage. This is needed to support tape-based archives that have a limited ability to manage large name spaces. This development is being done in collaboration with the UK e-Science data grid. The generic bundle management system will allow the use of multiple types of aggregation methods, while retaining the ability to apply the above micro-services to individual files within the bundle. A group at IN2P3 in Lyon, France is also developing micro-services for administering and monitoring the distributed iRODS system.

6. iRODS Rules
Given the above definitions of persistent state information and micro-services, one can generate rules that implement a preferred data management policy. A rule has four parts: Name; Conditions; Workflow Operations; Recovery Operations. The Conditions can be applied to any of the persistent state information attributes. Thus a rule might be applied only to files that are stored in a specific collection, or on a specific storage resource, or by a specific project, or for a specific data type. The Workflow operations can be composed of any of the micro-services or any rule. A recursive rule hierarchy can be defined, as long as an exit condition guarantees closure on the recursion. Not discussed in this paper is the passing of arguments between micro-services. The output parameters from a micro-service can be used as input for a subsequent micro-service. The flexibility provided by the rules can be illustrated by the following example (to avoid clutter, we do not show most of the recovery operations):

Consider the process of file ingestion into iRODS. Once a file is ingested, iRODS provides a rule for performing post-ingestion workflows. At the core level, iRODS does not specify any post-ingestion operations and hence the default rule for post processing on a “Put” operation is:

 AcPostProcForPut { ON () { nop; }}

The name of the rule is “AcPostProcForPut”. The condition processed by the “ON” statement is null, and therefore the only micro-service that is specified is a no-op.

This rule can be modified by a user community that would like to perform automatic replications for specific collections into which the files are being ingested. Such an illustrative rule is shown below. Depending upon whether the file is ingested into the “nvo” or “tg” collection, replication is done onto different resources. In the case of the “nvo” collection the replication is delayed for two hours and the copy is written to the “nvoReplResc” storage resource. In the case of the “tg” collection, replication is done immediately to the “tgReplResc” storage resource, followed by a checksum computation and validation. The administrators might have chosen these options because the files in the “nvo” collection are fairly large and hence waiting for replication might take time. In contrast the files in the “tg” collection might be more important and their immediate replication and validation is paramount. Files ingested in other collections follow the default no replica option.

acPostProcForPut

{ ON ($objPath like /tempZone/home/rods/nvo/*)

 {delay("<PLUSET>2h</PLUSET>") { msiSysReplDataObj(nvoReplResc,null); }}

 OR ($objPath like /tempZone/home/rods/tg/*)

{msiSysReplDataObj(tgReplResc,null); DataObjChksum($objPath,"verifyAll", *Status);}

 OR {nop; /* do nothing */}

}

Another user community might take a lazy approach to replication, and may demand that replication be done on all files off-line and checked periodically. This might have been coded by a periodic rule that is fired once every day at a set time. The “periodicReplication” rule executes the “acGetIcatResults” rule which queries the iCAT metadata catalog for a set of “dataNames” that satisfy the specified condition. The “foreach” command loops over each tuple in the result set and gets the “dataName” from the tuple, replicates the file to the storage resource specified by the input parameter “resourceName”, writes a message to standard out if the replication fails, writes a success message to standard out on successful completion, and writes a message to standard out when all files have been processed. These messages to standard out (if the administrator deems it necessary) may be piped to her through an “msiSendEmail” micro-service.

periodicReplication(*condition,*resourceName)

{acGetIcatResults("replicate", *condition, *result);

 foreach (result)

 {acGetDataName(*result,*dataName);

 msiDataObjRepl(*dataName, *resourceName, *stat1) :::

 writeLine(stdout,"Replication failed for *dataName with *stat1");

 writeLine(stdout,"Replicated *dataName to resource *resourceName with status

 *stat2");

 }

 writeLine(stdout,"Replication Finished Successfully for *condition");

}

Note that the dataName is obtained from the result tuple created by the call to the iCAT database, acGetIcatResults. The syntax “:::” denotes a recovery operation. In this case, an error message is written.
7. Summary
An important data management function is the ability to create rules that validate assertions about a shared collection such as authenticity, integrity, chain of custody, and arrangement. These criteria are used by the preservation community to define the trustworthiness of digital repositories. A mapping of the assessment criteria to iRODS rules has been examined for the RLG/NARA Trustworthy Repositories Audit & Certification: Criteria and Checklist [4]. On the order of 105 rules are needed to incorporate trustworthiness as a management objective. A similar assessment has been done on the NARA Electronic Records Archive capabilities list [5]. This defines the set of functions that the preservation environment should support for long-term preservation. Again a mapping has been examined of the desired capabilities to iRODS rules. On the order of 177 rules are needed to control the execution of each desired capability. The implication is that a self-consistent rule-based data management system is feasible that manages on the order of 300 rules to both enforce management policies and validate assertions about the data collection. The current research activities at SDSC are focused on achieving this goal.

8. Acknowledgement
This project was supported by the National Archives and Records Administration under NSF cooperative agreement 0523307 through a supplement to SCI 0438741, “Cyberinfrastructure; From Vision to Reality” and by the National Science Foundation grant ITR 0427196, “Constraint-based Knowledge Systems for Grids, Digital Libraries, and Persistent Archives”. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the National Science Foundation, the National Archives and Records Administration, or the U.S. government

9. References
1. integrated Rule-Oriented Data System, http://irods.sdsc.edu
2. Storage Resource Broker, http://www.sdsc.edu/srb
3. Rajasekar, A., M. Wan, R. Moore, W. Schroeder, “A Prototype Rule-based Distributed Data Management System”, HPDC workshop on “Next Generation Distributed Data Management”, May 2006, Paris, France.
4. RLG/NARA TRAC - Trustworthy Repositories Audit & Certification: Criteria and Checklist. http://wiki.digitalrepositoryauditandcertification.org/pub/Main/ReferenceInputDocuments/trac.pdf
5. The Electronic Records Archive capabilities list defines a comprehensive set of capabilities needed to implement a preservation environment, and can be examined at http://www.archives.gov/era/pdf/requirements-amend0001.pdf
Consistency

Check

Module

Metadata

Persistent

Repository

Rule

Base

Metadata

Modifier

Module

Config

Modifier

Module

Confs

Rule

Engine

Consistency

Check

Module

Rule

Modifier

Module

Consistency

Check

Module

Service

Manager

Resource-based Services

Micro

Service

Modules

Resources

Metadata-based Services

Micro

Service

Modules

Rule Invoker

Current State

Admin Interface

Client Interface

