

IPv6:

The Next Generation Internet Protocol

Sheila Frankel NIST

sheila.frankel@nist.gov

What is IPv6?

- Internet Protocol version 6
- The next generation Internet Protocol
- A large set of interconnected protocols that govern Internet operations and behavior at every level of the protocol stack, from applications down to the physical layer

Background

- Defined by the Internet Engineering Task Force (IETF: www.ietf.org)
- Internet Drafts (IDs)
- Requests for Comment (RFCs)

11/29/05 E-gov Security 2005

Background (cont'd)

- Working groups
 - ☐ IP version 6 (IPv6): 48 RFCs, 19 IDs
 - ☐ Mobility for IPv6 (MIPv6): 2 RFCs, 11 IDs
 - □ MIPv6 Signaling and Handoff Optimization (mipshop):3 IDs
 - □ IPv6 over Low power WPAN (6lowpan): 2 IDs
 - ☐ Site Multihoming in IPv6 (multi6): 1 RFC, 9 IDs
 - ☐ IPv6 Operations (v6ops): 9 RFCs, 14 IDs
- Disbanded working groups
 - □ Next generation transition (ngtrans): 15 RFCs
 - □ IPv6 Backbone (6bone)
 - □ IPv6 MIB (ipv6mib)

Advantages

- Increased number of addresses
- Increased ease of network management and configuration
- Simplified/expandable IP header
- Device mobility
- Quality of service (QoS)
- Multicast/multimedia
- IPv4 operational experience/new technology

5

Increased security: IP security (IPsec)

11/29/05 E-gov Security 2005

Transition

- Dual stack
- Tunneling
 - Manual or static
 - □ Automatic
 - □ IPv6-over-IPv4
 - □ IPv4-over-IPv6
- Translation
- Security/complexity challenges

Transition (cont'd)

- Security/complexity challenges
- Entities involved:
 - ☐ Hardware (network and host)
 - ☐ Software (operating system and applications; local and client/server)

7

 Applications may be a major impediment to an easy transition

11/29/05 E-gov Security 2005

What is IPsec?

- Security provided at the Internet layer of communications
- Provided by security headers
 - □ Encapsulating Security Payload (ESP)
 - □ Authentication Header (AH)
- Dynamic negotiation, update and management of symmetric secret keys
 - □ Internet Key Exchange (IKE)
- Optional for IPv4, mandatory for IPv6

11/29/05 E-gov Security 2005 8

Advantages of IPsec

9

- Implement once, in a consistent manner, for multiple applications
- Centrally-controlled access/security policies
- Enable multi-level, layered approach to security

11/29/05 E-gov Security 2005

Types of Security Provided by IPsec

- Data origin authentication
- Connectionless integrity
- Replay protection
- Confidentiality (encryption)
- Traffic flow confidentiality
- Access control

Types of Attacks Prevented by IPsec

- Address spoofing
- Replayed packets
- Man-in-the-Middle (MITM)
- Denial of Service (DoS)
- Traffic analysis

11/29/05 E-gov Security 2005

Security issues

11

- Transition complexity
- New protocols
 - □ Lack of operational experience
 - Interactions
- Address scanning no longer practical
- Address autoconfiguration vs. privacy addresses
- IPsec complexity, interoperability, applicability, interaction with other procotols

11/29/05 E-gov Security 2005 12

IPv6 Myths (or partial truths)

- Restoration of end-to-end communications
 - □ Topology-defined network
 - □ Policy-defined network
- The end of NAT (Network Address Translation) boxes

13

■ IPsec is the "silver bullet"